DeCarbCH Conference

1 March 2023 Christian Schaffner

PATHFNDR

Pathways to an efficient future energy system through flexibility and sector coupling

PATHENDR

Toolbox

Tools / models

- Calliope ٠ Nexus-e ٠ National scale SecMOD ٠ EXPANSE ٠ ReMaP ٠ Ehub ٠ **CESAR-P** • **Demonstrators** Smart Grid ٠ Ehub, move and NEST •
- Energy System Integration

Tech.

scale

https://sweet-pathfndr.ch/toolbox/

Lunch talks

Series I: Tools / models (7 talks) Series II: Demonstrators (3 talks) Series III: Policy (4 talks)

Features **Electricity System Optimization Electricity Market Optimization Centralized System Grid Security Assessment** (H₂) **Macroeconomic Assessment Decentralized System** CHF/kWh **5** Core Features of Nexus-e • TWh PATHFNDR 12.05.2021

Example: Nexus-e tool by Marius Schwarz

https://sweet-pathfndr.ch/lunch-talks/

Main concepts & metrics

Sustainability

Focus on three measures from the **Sustainable Development Goals:**

- Share of **renewable energy**
- Energy efficiency for economies and technologies
- Greenhouse gas emissions

Flexibility

Ability of the energy system to respond to variability in electricity supply and demand at different time scales by adjusting its **supply, demand, storage and imports / exports** from/to neighboring systems

Sector coupling

Interconnection of **energy supply and demand sectors** (energy carriers and consumers):

- Amount of energy and power exchanged
- Efficiency of the energy conversion

Scenario dimensions & assumptions

Dimension	Variable	Quantification	CROSS
Climate	Net-zero	GHG target	х
policy	Carbon tax	Carbon tax	
	Technology incentives	Incentives for flexibility technologies	
Technological	Availability of technologies	Electricitity, nuclear life time, CCS, hydrogen	х
	Technology costs	Development of costs of keystone technologies	
Social	Public acceptance of new infrastructure	Solar, wind and hydropower potentials	x
	Willingness to change	Demand shift	
Geopolitical	Electricity trade	Transfer capacity	х
	Hydrogen	Hydrogen imports	x
	Carbon sequestration	Carbon sequestration abroad	x
	Biofuels and biomass	Biofuels and biomass imports	х

Direct influence

Key technologies

	Thermal	Electricity	Gaseous fuels	Solid & liquid fuels
National scale	Solar thermalCHP	 Solar PV (rooftop, alpine, agri) 	 PEM electrolyzers Fuel cell (H₂/O₂) 	Synthetic fuels and feedstocks for industry
Site Planning	 Heat pumps Heat recovery Short-term and seasonal storage 	 Electro-chemical batteries (home- and district/grid- scale) Supercapacitor storage 	 Fuel cell (H₂/air) Refinement and H₂/O₂ storage Methanation processes 	/ transport
Utility Planning	Thermal networks	 system EV chargers Grid expansion (distribution and transmission) 	 Gas grid H₂/CO₂ storage CO₂ capture/removal Gas-fired combined cycle 	
Site Control		 New/expansion of hydroelectric (dams, pumps, reservoirs) 	 New waste-fired New biomass or biogas New nuclear (small 	
Network Control			 newest pressurized-water reactors) Direct air capture 	

Technology

Local scale

Synthesis topics

SWEET swiss energy research

PATHEND

Measures for and lessons from the energy crisis for Switzerland

- High energy prices
- Reduction of energy import
- Fossil fuel phase-out,
- (Renewable) energy mix
- Season demand and supply
- EU energy policies

Technologies and their potential for flexibility and sector coupling

- Different technologies
- Various scales (national to local)
- Technical, regulatory and market constrains / measures

Synergies with DeCarbCH?

PATHFNDR was sponsored by the Swiss Federal Office of Energy (SFOE)

Prof. Dr André Bardow

<u>abardow@ethz.ch</u> ETH Zurich PATHFNDR Director

Dr Christian Schaffner

<u>schaffner@esc.ethz.ch</u> ETH Zurich PATHFNDR Deputy Director

Lea Ruefenacht

<u>lea.ruefenacht@esc.ethz.ch</u> ETH Zurich PATHFNDR Project Manager

www.sweet-pathfndr.ch

WP1 Overview of results / achievements

Task 1: Scenarios and objectives on an international scale (1 group at TUD, 2 groups at ETHZ)

Task 2: Detailed pathways on a national scale (3 groups at ETHZ, UniGe)

Task 3: Multi-level modelling methods (ETHZ, ZHAW, TUD)

WP1 Switzerland within Europe if market transfer capacities are restricted

2040, Load (Total) 2040, Load (Net) 2040, Import (Net 2040, Load Shed 2040, Import 2040, DSM (Down) 2040, Battery (Generation) [HWh] 2040, Pump (Generation) 2040, PV 2040, Wind Offshore 2040, Wind Onshore 2040, Biomass 2040. Dam 2040, Run of river 2040, Gas (simple cycle) 2040, Gas (combined cycle)-CCS 2040, Gas (combined cycle) 2040, Oil 2040, Coal 2040, Lignite 2040, Nuclear 2040, Export 2040, DSM (Up) 2040, Battery (Load) 2040, Pump (Load) 1 2 3 4 5 6 7 8 9 10 11 12 Time

PV: 20.4 GW / 17.6 TWh

Base Scenario: Current NTCs

- Gas: 0.07 GW / 0.13 TWh
- Import: 52.4 TWh
- Export: 29.6 TWh

Alternative Scenario 1: 30% NTCs

- PV: 36.2 GW / 28.3 TWh
- Gas: 0.18 GW / 4.96 TWh
- Import: 19.0 TWh
- Export: 10.6 TWh

sweet swiss energy research for the energy transition

PATHENDE

WP1 European context and technology data

Sector-coupled high-resolution model with ability to produce 100s of configurations

Explore results: <u>https://explore.callio.pe/</u> Pickering et al, <u>https://doi.org/10.1016/j.joule.2022.05.009</u> Europe-wide CCS and BECCS: example of biogenic removal and geological storage

Rosa et al, https://doi.org/10.1039/D1EE00642H

WP1 Scenario definition through building blocks

Dimension	Variable			
Climate policy	Net-zero	let-zero		
	Carbon tax			
	Technology incentives			
Technological	Availability of technolog	ies		
	Technology costs			
Social	Public acceptance of ne	cceptance of new infrastructure ess to change lifestyle and consumption		
	Willingness to change li			
Geopolitical	Electricity trade			
	Hydrogen		Parameter	
	Carbon sequestration	e H	Population	
	Biofuels and biomass	lired	GDP	
		lo d nflue	Energy demand	
		, ,	Resource poter	tials
			Global climate of	hange

PATHENDR

sweet swiss energy research for the energy transition

"Direct" influence

WP1 Near-term outlook

scenario implementation model + sector coupling

(Task 3: Modelling methods)

sweet swiss energy research

WP1 Contribution and impact

WP1 **Expected deviations or delays**

- The order of two milestones was reversed, to allow better synchronization of work within task 1
- M1.1.2.1 (Initial quantification of hourly end-energy demands and their shifting potentials across Europe)
 → originally month 12, now 24)
- M1.1.2.2 (Initial quantification of storage capacities across Europe)
 - \rightarrow originally month 24, now 12,

Work package 2

Title: Pathways on local scale (city, village, district, site scale)

Leader: Turhan Demiray (ETH Zurich) & Adamantios Marinakis (ETH Zurich)

Duration: 1 May 2021 – 30 April 2026 (60 months)

WP2 Contribution and impact

Objective: Identify the value of the various local distributed resources, as well as the specific role that they can play, as part of an optimal pathway to a flexible and low-carbon energy system.

Main research topics tackled in WP2:

- Available flexibility by end-users
- Value of local flexibility for distribution utilities
- Operation of distribution networks
- Benefits (and risks) of sector coupling in distribution
- Infrastructure investments by distribution utilities

WP2 The big picture

WP2 Heating and cooling demand

- 4 models in development for heating and cooling demand (currently residential, next step commercial):
 - Machine learning model based on RDB data only
 - Simplified physical model based on RDB data only
 - Building energy system dynamics model
 - Model based on actual measurement data
- Currently under validation with actual consumption data from ٠ Swiss cities and communities
- Achievement: Able to reproduce the heating energy dema ٠ with very little public RDB data

31

WP2 Ehub tool development

- Empa Ehub tool is used, a MILP model optimizing for cost, CO₂ emissions and level of autarchy
- E-mobility has been added to the Ehub tool*, considering fleet size, charger size, transport demand, vehicle avaialiblity, controllability and battery size
- Preliminary analysis has been performed on available (real evor simulated) examples using the Ehub tool

SWEET swiss energy researc

- e-mobility flexiblity on Chur system (306 EVs, 100 MW power distribution grid, 161 GWh electricity demand)
- power-to-H₂-to-power for autarkic building consisting of 40 apartments in Baden

WP2 Ehub tool development

- Empa Ehub tool is used, a MILP model optimizing for cost, CO₂ emissions and level of autarchy
- E-mobility has been added to the Ehub tool*, considering fleet size, charger size, transport demand, vehicle avaialiblity, controllability and battery size
- Preliminary analysis has been performed on available (real evor simulated) examples using the Ehub tool

SWEET swiss energy research

- e-mobility flexiblity on Chur system (306 EVs, 100 MW power distribution grid, 161 GWh electricity demand)
- power-to-H₂-to-power for autarkic building consisting of 40 apartments in Baden

Participants (*pitch): BKW*, Groupe-E*, WWZ*, A&W*, Swissgrid*, MAN, EWB, Siemens, ABB, SGVW

PATHEND

- Site planning & operation
- Flexibity for elec. distribution grid
- Sector coupling in distribution
- Flexibility for elec. transmission grid

Participants (*pitch): BKW*, Groupe-E*, WWZ*, A&W*, Swissgrid*, MAN, EWB, Siemens, ABB, SGVW

PATHEND

Pitched topics:

•

- Site planning & operation
- Flexilbity for elec. distribution grid
- Sector coupling in distribution
- Flexibility for elec. transmission grid

Participants (*pitch): BKW*, Groupe-E*, WWZ*, A&W*, Swissgrid*, MAN, EWB, Siemens, ABB, SGVW

PATHEND

Co-optimization of Integration of flexibility provision electricity & heating at into the planning district level Planning of the **site** Identification of site r 🕨 & flexibility potential Site: Operation of Utility: Monitoring, Flexibility-aware planning of utility network infra. for all 14 energy carriers <u>B</u> Heat Electricity sweet swiss energy research

- Site planning & operation
- Flexilbity for elec. distribution grid
- Sector coupling in distribution
- Flexibility for elec. transmission grid

Participants (*pitch): BKW*, Groupe-E*, WWZ*, A&W*, Swissgrid*, MAN, EWB, Siemens, ABB, SGVW

PATHEND

- Site planning & operation
- Flexilbity for elec. distribution grid
- Sector coupling in distribution
- Flexibility for elec. transmission grid

Participants (*pitch): BKW*, Groupe-E*, WWZ*, A&W*, Swissgrid*, MAN, EWB, Siemens, ABB, SGVW

- Site planning & operation
- Flexilbity for elec. distribution grid
- Sector coupling in distribution
- Flexibility for elec. transmission grid

WP2 Near-term outlook

- Set up small working groups with cooperation partners
- Development of archetype "use-cases"
- Finalization of work on end demand
 - Tool used in EDGE and DecarbCH
 - High interest from multiple utilities
 - Potential link with P&D in EDGE
- Progress in site planning
 - Implement load shifting
 - Consolidate use-cases
 - Perform sensitivity analysis

WP2 Near-term outlook

- Exchange on models/data with WP3 on considered technologies
- Progress in multi-site EV charging case
 - Example simulations
 - Reflect settings of collaboration partner (MEH Zug) in the controller
 - Potential link with P&D project
- Start of utility planning
 - Optimization framework
 - Archetype use-cases
- Start of utility-level flexibility monitoring

Work package 3

Title:Technology and model development

Leader: Philipp Heer (Empa) & Massimo Fiorentini (Empa)

Duration: 1 May 2021 – 30 April 2025 (48 months)

WP3 Contribution and impact

- Support WP2 / WP1 with high-detail modelling and techno-economical parameters for site-scale to nationalscale analyses
- Coordinate with other SWEET and compare inputs/outputs (e.g., assumptions in EDGE and DeCarbCH)
- Support future P&D projects on modelling of case studies

WP3 Coordination activities

Shared workflow with WP2 for parameters of technological setups and their models

- Simplified (techno-economical parameters tables)
- Detailed (models to be integrated in high-fidelity simulation platform)

Technology scale (WP 3)

WP3 **Extension of technology portfolio**

- ESI (PSI) demonstrator connected to ReMaP ٠
- Path for EPFL's Smart Grid defined. •
- A stochastic-optimization for aggregate power and ٠ energy flexibility dispatch in grids was developed (EPFL)
- Novel concepts of high-capacity seasonal thermal ٠ storage were investigated (HSLU) and impact of modelling abstraction in optimization methods (EMPA)

Apr 2016

Jul 2016

Oct 2016

date

Jan 2017

Apr 2017

Average BTES temperature for rings with equal vo

Days of simulation

WP3 Model development for integrated systems (power & heat)

- System identification of a 100 kW H2/O2 PEM fuel cell system was carried out (PSI) - can be used for optimal control or system design purposes
- Preliminary use for MPC application

Efficiency PtH₂tP in 2040, estimated:

WP3 Near-term outlook

- Technologies selection and techno-economical parameters defined and tables completed, optimizationoriented modelling reviewed with WP2
- Development of case-study systems for each "silo",
 implemented in high-fidelity simulation platform to test
 the technologies models integration and interaction
- **EPFL platform connected** to ReMaP through Empa's Ehub
- Opportunities: Exchange with other SWEETS, particularly Edge and DeCarbCH, Build on consortium partners' case studies

Work package 6

Title: Business opportunities and innovation strategies

Leader: Christof Knoeri (ETH Zurich) & Jochen Markard (ZHAW)

Duration: 1 May 2021 – 30 April 2026 (60 months)

WP6 Overview of results / achievements

T6.1 Transition pathways and business interests

- Phases to net-zero, multi-sector interaction, phase-out policies, hydrogen discourse
 (3 articles published/accepted, 2 under review, 2 in prep)
- T6.2 Technological innovation and the interplay

between firms at value chain level

• On cross-sectoral collaboration for a green hydrogen (1 article to be submitted)

T6.3 Business opportunities and innovation strategies at the firm level

• Cyber-physical platforms (enel x) and sustainable innovations (TESLA) (1 article submitted & 1 to be submitted)

Phases to net-zero; Markard & Rosenbloom (forthcoming)

WP6 Emerging conflicts around hydrogen? A discourse network analysis of the debate in Germany

Nils Ohlendorf, Meike Löhr, Jochen Markard

Production: Green vs. blue hydrogen

Use: Wide vs. restricted

Import: Risks vs. benefits

WP6 Cross-sectoral collaboration for a green hydrogen value chain

Katharina Wildgruber, Annegret Stephan, Johannes Meuer

- 4 archetypes of green hydrogen projects identified:
- **1. The Mega Project** (Hight project cost, many project partners.)
- **2. The Big Local Project** (Many project partners, very local project consortium. Not long project duration.)
- 3. The Few Nationalities Project (Not very

international consortium, local or big and short term.)

4. The commercial project (High share of commercial partners.)

WP6 **Near-term outlook**

Samstag, 18. September 2021

Neue Bürcher Zeitung

MOBILITÄT 57

Analysis of value chains: •

Sector analysis of truck-based cargo transportation

Advancing paper projects presented before •

Die Zukunft liegt in der Vielfalt

Der Bierbrauer Feldschlösschen ist neu mit 20 Elektro-Trucks unterwegs. Doch in der Branche ist man sich einig, dass Lastwagen künftig über eine breite Palette von Antrieben verfügen werden. VON MARTIN SALZMANN

Während beim Personenwagen die Serienproduktion von Elektromobi-E-Lastwagen auch aus der Brennstofflen schon rundläuft, rollen erst wenige zelle (Wasserstoff) zu beziehen. Im EU-Elektro-Lastwagen aus den Werken. Raum erklingt aus der Lkw-Branche deshalb der laute Ruf, dass Regierunge Etwas weiter ist Renault Trucks, wo man sich sehr früh auf Elektro-Lastnicht nur die CO2-Reduktion forder sondern auch dafür sorgten, dass die nötige Lade- und Tankinfrastruktur für wagen ausgerichtet hatte und in der Normandie die Serienproduktion von mittelschweren E-Lastwagen (bis die alternativen Antriebe zeitnah aufge 26 Tonnen Gesamtgewicht)* gestar-tet hat. Die erste Grossbestellung bei baut würde. In der Schweiz ist die Wasserstoff Renault tätigte die Carlsberg-Gruppe 2019 für ihre Schweizer Tochter Feldschlösschen. Im Herbst 2020 begannen die ers-

infrastruktur bereits weit gediehen, denn dank der Initiative von H2 Energy aus Zürich und der sektorenübergrei-fenden Zusammenarbeit von Hyunten Lkw bei der Brauerei in Rheinfeldai Hydrogen Mobility, Hydrospi-

Volvo Trucks setzt bei seinen Baustellenlastwagen auf Elektroantrie.

WP6 Contribution and impact

- Through the internal PATHFNDR channels we feed our findings back WP 1,2 and 3.
- We are discussing collaborations with the P&D projects (WP 4 and 5)

Work package 7

Title: Policies for sector coupling and enhanced flexibility

Leader: Prof. Anthony Patt (ETH Zurich)

Duration: 1 May 2022 – 30 April 2026 (48 months)

WP7 Overview of activities

- T7.1 Policy mixes for transition to net zero
 - International Net-zero policies for deep decarbonization: Analysis of net-zero strategies (CH, UK, NO, EU Green Deal)
- T7.2 Public acceptance
 - Identification of factors leading to greater or lesser public acceptance of alternative policy approaches
- T7.3 Top-down economic and social analysis of policy portfolios
 - Appraisal of economic, social, and environmental consequences policies for decarbonizing the Swiss energy system

WP7 Near-term outlook

- Official WP7 kick-off (October 2022)
- Concept development for comparative policy mix analysis

