

With the EnAW Roadmap on the way to net-zero

SWEET DeCarbCH Networking Conference 2023

The Energy Agency of the Swiss Economy (EnAW)

Industrial greenhouse gas emissions by source

92% (5.5 million t/a) of GHG emissions originate from process heat generation and from **processes**, the remaining 8% from space heating.

53% process heat

3

Fuels used for process heat

- Mainly fossil fuels (73%) and waste materials (23%)
- Only 4.2% renewable energy sources

Science Based Targets initiative (SBTi)

GOAL

Developing a plan to reduce greenhouse gas emissions to "net-zero" in a forwardlooking, economically sensible and stepby-step manner.

Methodology for creating a Decarbonisation Roadmap

Process/technology changes Efficiency measures Temperature requirements Process optimisation New methods/technologies Technological change Process integration (Waste) heat recovery Innovations **Product changes Thermal networks** $-\Delta$ Net-zero 문 Product substitutions with more Expansion of thermal networks energy-efficient products (internally or across sites) Lower temperature requirements Storage Lower ressource demand ÷Ez S Better recyclability In-/Offsetting, CCS/CCU New energy technologies Selection by: In-/Offsetting Temperature CO₂ capture & storage/utilisation Availability/potential © EnAW Costs

7

Roadmap results at a glance (example)

Focus: optimizing the overall system

Our main focus is on the best possible interaction of all site units, including the energy supply, and therefore always on optimizing the overall system!

- Using waste heat instead of recool it
- Reducing the process temperatures to increases the heat recovery potential
- Substitution of CO₂-intensive by renewable energy sources

Thermal fingerprint of the heat/cold streams

© EnAW

Temperatures of processes vs. energy sources

Renewable energy technologies			Г							Т				Τ[°C]															
Technology	0 20	40 60	80	120	140 160	180	200 220	240	260 280	320	340	360	380 400	450	500 550	600 600	650	700 750	800	850	900 950	1000	1050	1150	1200	1250	1300	1400	1450	1500 1550 1600
Heat pump																														
High-temperature heat pump																														
District heating																														
Solar thermal, vacuum																														
Solar thermal, concentrating																														
Biomass combustion, wood																														
Biomass combustion, other																														
Biogas (methane)																														
Waste combustion																														
Liquid synthetic fuels																														
Electrical heating																														

Challenges of decarbonising the industrial and especially SME sector

Challenges of decarbonising the SME sector

Technology

- Practical aspect: From the study to the construction project
 - Retrofitting steam to hot water systems in existing site infrastructure
 - Substitution of direct burned air dryer to a renewable system (powder coating systems, grass dryer,...)
 - Dimensioning of systems especially heat pump / heat recovery and storage technologies
- Know-how about CO₂ capture & storage/utilisation systems for SME

Socio

- Dealing with uncertainties and concerns about new technologies
- Waiting for new technologies (hydrogen)
- Interaction between the various suppliers (heating, cooling, compressed air, waste water, ...)
 - Mutual know-how of technologies
 - Dimensioning of matching systems and taking the responsibility
 - SME are not used to pay for dimensioning studies or energy concepts

Thank you very much for your attention.

For further information on EnAW's decarbonization roadmap, please visit:

www.enaw.ch/dekarbonisierung

