



7 NOVEMBER 2024

Case study Cremo: Integration concept and status

chweizerische Eidgenossenscha

Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Federal Office of Energy SFOE

Nicole Calame, CSD Ingénieurs



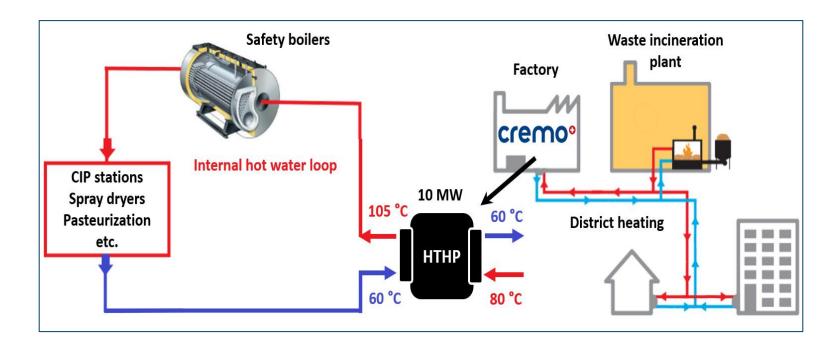
1

### **Company presentation**

- Among largest milk processing companies in Switzerland (est. 1927) owned at 90% by milk producers
- 8 production sites in Switzerland
- Villars-sur-Glâne factory processes 240'000 t/yr of milk to produce
  - Cheese and butter
  - Skim milk, whey and milk permeate powder






**CSD**ENGINEERS

#### cremo°

High Temperature Heat Pumps | 07 November 2024 | Online webinar

# Potential opportunities for HTHP

- Steam for milk permeate powder drying plant
- Boost district heating network distribution temperature
- Upgrade heat recovered in the factory to a hot water loop





**CSD**ENGINEERS

IG

onfédération suisse onfederazione Svizzer

viss Federal Office of Energy SFO

OST

- Supply steam to the milk permeate powder drying process
  - Low pressure steam needed

cremo

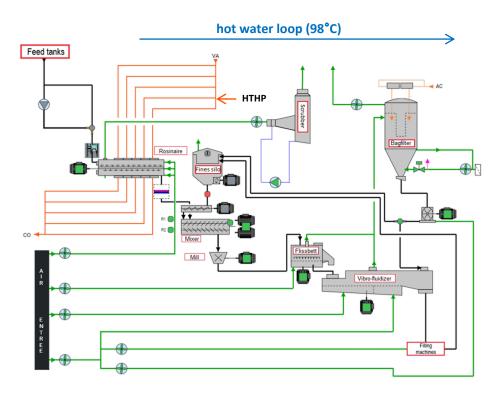
- 15% of factory steam consumption (from gas boiler)
- Simultaneity and proximity of sources & sinks (semi-continuous process)
- Potential waste heat to be recovered



**CSD**ENGINEERS

OST



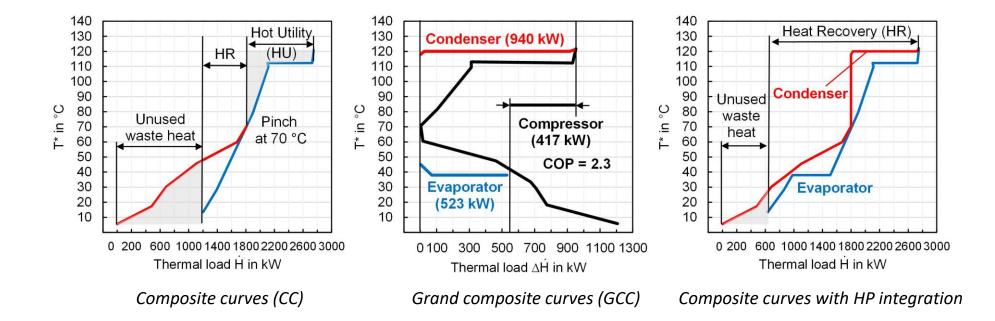

#### 5

### Characterisation of the streams

- Measurement campaign : fundamental needs vs current heat supply?
  - Sinks :
    - Steam for paddle dryer (1.8 bara steam)
    - Air heaters for paddle dryer, static & fluidized bed (between 75°C - 117°C)
  - Sources :

cremo°

- Exhaust air from paddle dryer and from static & fluidized bed (66°C)
- Hot water loop (98°C)






### Pinch Analysis of case study

cremoo

- Heat recovery potential through direct heat transfer of about 600 kW between air flows •
- HTHP integration identified providing low-pressure steam at 110 °C using humid exhaust air as a • heat source
  - HTHP : evaporation at 38 °C, condensation at 120 °C  $\rightarrow$  low expected COP of 2.3 ٠
  - Constrains : existing heat recovery on exhaust air streams / very little space in air heating room for modifications ٠



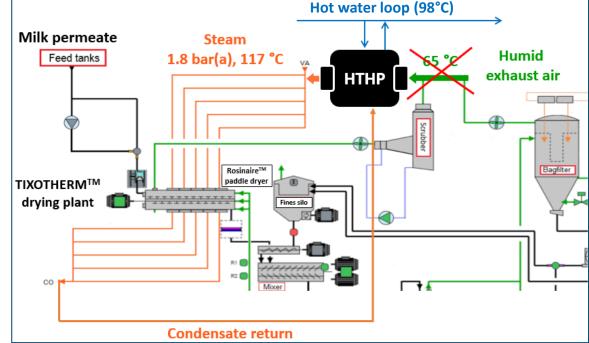
**CSD**ENGINEERS

onfédération suisse onfederazione Svizzer

nfederaziun svizra wiss Federal Office of Energy SFO OST

IG

н


## Integration concepts



- Optimal integration from Pinch analysis
  - Heavy modifications required to existing heat recovery system
  - Spatial restrictions
- Considered concept
  - Sink : 810 kg/h steam at 1.8 bar(a) for the paddle dryer
  - Source : 98°C water loop
- Alternative concept tried
  - Sink : 1'300 kg/h at 4 bar(a) for paddle dryer + air heaters
  - Source : 98°C water loop

cremoo

• Proved to be a technical no-go with MVR



#### High Temperature Heat Pumps | 07 November 2024 | Online webinar

### Integration considerations

- Points to be checked
  - Simultaneity sink-source?
  - Heat storage needed?
  - Space available?
  - Supporting structure sufficient?
  - Electrical power reinforcement needed?
  - Compliance to hygienic conditions for all equipment?
  - Introduction of equipment?
  - Redundancy?

cremo



8



#### 1.8 bar(a) / 500 kW steam produced

• MVR heat pump with COP of 9

Preliminary evaluation

Initial data and hypothesis

- Annual operating time 2700h/yr
- Specific HTHP cost 450 CHF/kW
- Subsidies from myclimate & SFOE
- First result estimates
  - Annual energy saving : 15%
  - Annual CO<sub>2</sub> emissions reduction : 94%
  - Payback of 4 years

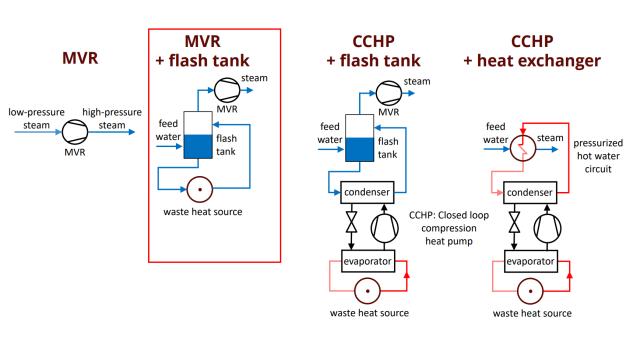


**CSD**ENGINEERS

[IEA Annex 58 Task 1, based on manufacturer data]

# °omeno

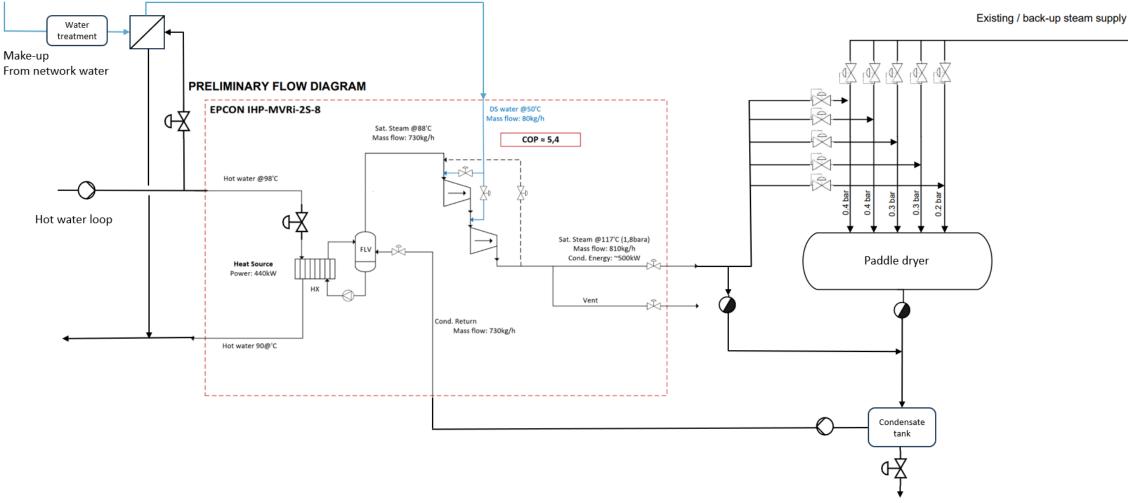
#### High Temperature Heat Pumps | 07 November 2024 | Online webinar


Source : IEA Annex 58

### Heat pump type selection

- Various steam-generating HP technologies available
- MVR technology chosen
  - Mature and reliable technology
  - Good efficiency
  - Contains no refrigerant fluid
  - Sub-atmospheric evaporation
- Challenges faced

cremoo


- Small capacity out of the specification for various suppliers
- Introduction to  $5^{\text{th}}$  floor by the freight lift ( $\rightarrow$  setup on 2 skids)





#### Integration scheme

• EPCON MVR-HTHP integration concept at Cremo factory : technically feasible



#### **cremo**°

High Temperature Heat Pumps | 07 November 2024 | Online webinar

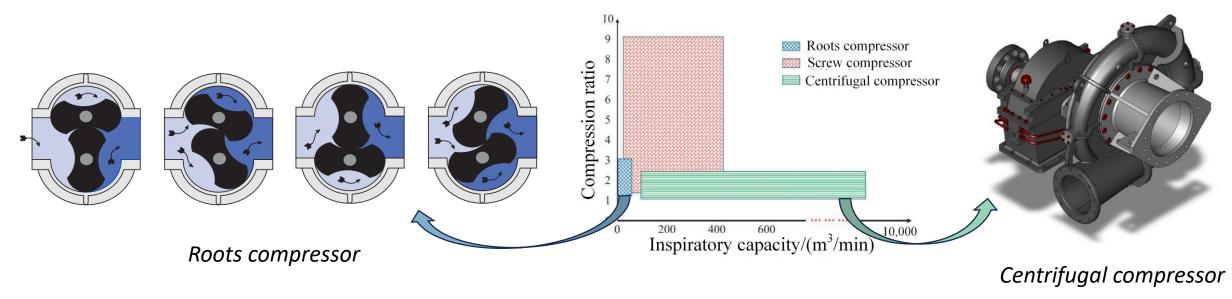
HEIG

CSDENGINEERS \*

INGENIOUS BY NATURE

onfédération suisse

Confederaziun svizra Swiss Federal Office of Energy SFOE


nfederazione Svizzera

OST

EPFL

# Performance gap

- Expected COP = 9 for MVR-HP  $\rightarrow$  COP = 5.4 effective value
- Low steam flowrate
  - Compression technology affected
  - 40-60% isentropic efficiency of roots compressor vs 70-90% of centrifugal blower
- Better efficiency for large scale compressors in general



**CSD**ENGINEERS

OST

# **Project results**

- Total cost of the project (CAPEX)
  - CHF 1'570'700.-
- Specific cost
  - 3'140 CHF/kW installed
- Cost efficiency

cremo

- OPEX overcost : 72 CHF/tCO<sub>2</sub> avoided
- No profitability
  - 22yrs payback if 200CHF/tCO<sub>2</sub> conceded for avoided emissions
  - Heat source not free
  - High specific cost of HTHP
  - Lower COP than expected
  - Moderate operating time
  - Not eligible to myclimate subsidies, to be confirmed for SwissEnergy program (included here)

| Project costs breakdown                |       |
|----------------------------------------|-------|
| Source side                            | 4.5 % |
| MVR HTHP incl. delivery & installation | 85.0% |
| Secondary side                         | 6.5 % |
| Other                                  | 4.0%  |

| Environmental benefits                     |     |
|--------------------------------------------|-----|
| Annual energy saving                       | 15% |
| Annual CO <sub>2</sub> emissions reduction | 98% |

# Cost efficiency improvement

- Alternative heat source, broaden the search out of particular process
  - Waste heat (under study)
  - Even better if cooling utility avoided by HTHP integration
- Larger heat pump
  - Lower specific cost
  - Increased efficiency
- Increased operating time
- Higher cost for gas

cremo

CSDENGINEERS Lesters Revizerland University of Applied Sciences
CSDENGINEERS

# Subsidy programs

CSDENGINEERS<sup>↑</sup> Confederation virture Confederation virture Swiss Rederal Office of Energy SFOE

- HP for process heat SwissEnergy/SFOE
  - Subsidy of max. 40% of over-cost for industrial heat HP project
- Industrial HP Myclimate
  - Subsidy
    - Global amount of 18 ct/kWh (average over last 3 years consumption)
    - Yearly payment of CHF 160.-/tCO<sub>2</sub> up to subsidy amount is reached
    - Subsidy agreement until end of 2030
- Check the eligibility conditions



#### °omeno

### Conclusions



• Technically feasible solution found

#### • Benefits

- Environmental : 98% annual CO<sub>2</sub> emissions reduction for the paddle dryer steam supply
- Considered MVR-HP contains no refrigerant fluid
- Installation close to the process unit keeps integration costs down
- Efficiency : production as close as possible to the fundamental heating needs
- Source : hot water loop availability
- Challenges
  - Profitability to replace fossil steam production
  - Low steam flow rate for MVR technology
    - Performance gap with larger machines
    - Increased price CHF/kWh for HTHP
  - Lack of data to find sufficient waste heat at interesting temperature
  - Semi-continuous production with moderate operating time
  - Factory building : access to the 5th floor for HP introduction



• Further information on HTHP : <u>https://heatpumpingtechnologies.org/annex58</u>

#### cremoo