

WEBINAR ON HIGH TEMPERATURE HEAT PUMPS

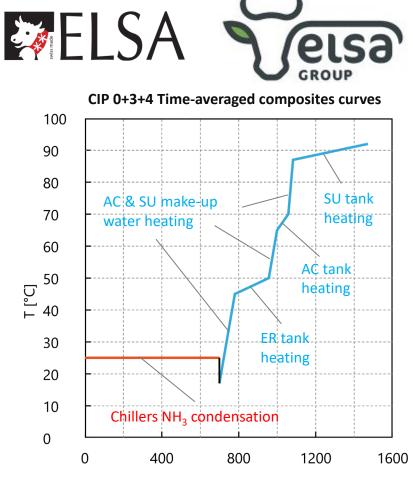
7 NOVEMBER 2024

Lessons Learned & Key Messages

Cordin Arpagaus, OST

Guidelines for the implementation of HTHPs in industrial processes

Lessons Learned:


- HTHPs provide in energy savings and decarbonization
- Guidelines offer insight from basic principles to defining efficient integration concepts

CSDENGINEERS

 Consider CAPEX, OPEX, funding, and subsidies in economic calculations

- Apply Pinch Analysis, which is relevant for integration
- Favorable electricity prices are crucial for HTHP adoption

ELSA Dairy case study: Integration concept & status

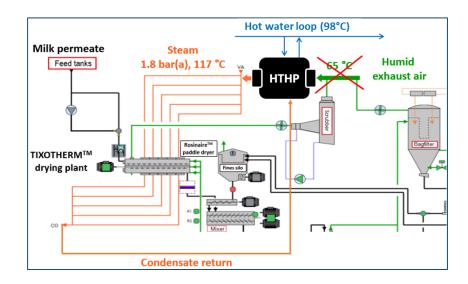
Lessons Learned:

 In retrofit projects, constraints can become killing factors → check potential killing factors first before moving on

onfédération suisse onfederazione Svizzer

wiss Federal Office of Energy SFO

OST


 The search for "optimal" HP integration solutions under practical constraints may highly combinatoric and multicriteria → Use the guidelines to filter out candidates

CSDENGINEERS

- Gain process knowledge before making decision → a HTHP is not always necessary, HP may do the job even more efficiently
- With focus on decarbonisation, **HP is hard to "sell"** and may be contra when steam is produced from biomass

Cremo case study: Integration concept & status

Lessons learned:

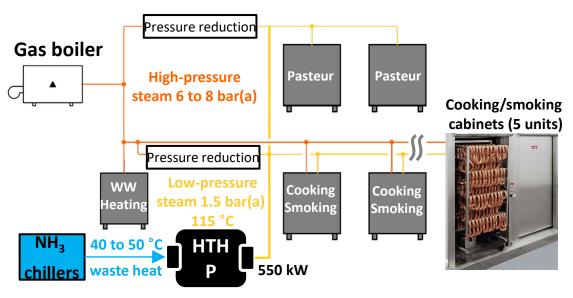
 Integration at process level on 5th floor is technically feasible with a 500 kW steam HTHP

onfédération suisse onfederazione Svizzer

viss Federal Office of Energy SFO

OST

• Small capacity HTHP \rightarrow efficiency decrease & specific costs rise


CSDENGINEERS

• **98% CO₂ emissions reduction** with HTHP integration

- HTHP is a solution for **industrial heat & steam decarbonization**
- Good knowledge of process streams is necessary:
 - To find best match between sink and source for HP integration
 - To supply their fundamental heat needs (not necessarily as currently done) → reduce temperature levels of heat supply and enhance HP efficiency
- New and renewable technologies have a higher cost.
 OPEX overcost acceptable for CO₂ emissions avoided?

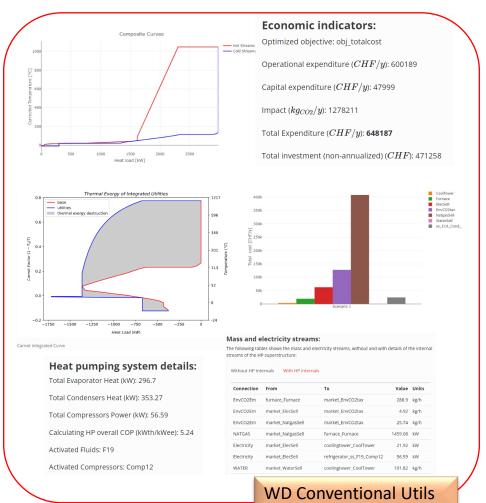
Gustav Spiess case study: Integration concept & status

Lessons Learned:

• HTHP technologies and waste heat from chillers are available

OST

CSDENGINEERS


Energy costs & CO₂ emissions can be reduced

onfédération suisse onfederazione Svizzer

iss Federal Office of Energy SEC

- Economic sensitivity analysis is crucial
- Measured steam profile is essential for decision-making and HTHP sizing
- Pinch Analysis supports decision-making

Web-based integration tool

Lessons Learned:

• **Tools are required** to systematically and objectively compare the performance of alternative technologies

OST

onfédération suisse

Confederaziun svizra Swiss Federal Office of Energy SFOE

onfederazione Svizzer

CSDENGINEERS

- Automated computational & reporting tools can speed up modeling, reporting and comparison of scenarios
- Data-handling platforms, like Excel and open-source programming languages and libraries are useful

- Develop support tools that **fit different users' profiles**
- Qualified engineers with powerful tools are required to leverage models databases and routines for industrial diagnosis and optimization
- **Consider open-source tools** addressing web scalability, maintainability, server hosting, and confidentiality issues

The team acknowledges the Swiss Federal Office of Energy (SFOE) for supporting the project:

Annex 58 HTHP-CH: Integration of High-Temperature Heat Pumps in Swiss Industrial Processes

Project Number: SI/50233

High Temperature Heat Pumps | 07 November 2024 | Online webinar

- (1) What are your lessons learned from the project?
- (2) What topics were missing (not addressed) in the project?
- (3) What are the future next steps with the heat pump integration in your company?

CSDENGINEERS

Industrial partner feedback round

Questions from the Q&A chat

- (1) What primary energy are you using for heating today? (gas, oil, biomass, electricity, district heating)
- (2) Do you already have a heat pump in operation? (yes, no)
- (3) Do you already have experience with HTHPs? (yes, no)
- (4) Is there potential for HTHP in your company? (yes, no)
- (5) What would be the required heating capacity for the HTHP? (50 to 100 kW, 100 to 500 kW, 500 kW to 1 MW, 1 MW to 5 MW, 5 to 10 MW, <10 MW)</p>
- (6) What would be the required steam pressure (hot water temperature)? (1 bara, 2 bara, 3 bara, 4 bara, 5 bara, 80 °C, 100 °C, 120 °C, ...)
- (7) What refrigerant would you prefer in a HTHP? (water, ammonia, CO2, hydrocarbon, noble gas, synthetic HFO, mixture)

CSDENGINEERS

Answers from the Poll

1. Have you already implemented or realized an industrial heat pump?

Yes Ihre Antwort	47%
No	53%

2. Do you have a specific application for an industrial heat pump?

Yes Ihre Antwort	72%
No	28%

3. If yes, which application (2 to 3 keywords)?

	water heat pump	Iow-pressure
steam	generatio	n _{Evaporator with MVR}
pressure steam C lo	heat source 2t/h Process	heating system heat
rec	overy of heating	chemical application

4. Which heating capacity is required?

No preference

<100 kW	2%
100 to 200 kW	10%
200 to 500 kW Ihre Antwort	15%
500 kW to 1 MW Ihre Antwort	21%
1 to 5 MW Ihre Antwort	35%
>5 MW	17%
Which refrigerant would you use for an industr	ial heat
Which refrigerant would you use for an industr pump? Ammonia (8717) Ihre Antwort	20%
pump? Ammonia (R717) Ihre Antwort	20%
pump? Ammonia (R717) Ihre Antwort CO2 (R744) Ihre Antwort	20%

6. In which industrial sector do you see the greatest potential for HTHP?

OST

istern Switzerland niversity of Applied Sciences

CSDENGINEERS⁺

INGENIOUS BY NATURE

HEIG

Food and beverage Ihre Antwort	27%
Chemicals	22%
Pharma Ihre Antwort	21%
Pulp and paper	16%
Textiles	4%
Metal	3%

7. How did you like this Webinar?

43 Antworten

22%

hweizerische Eidge

Confederaziun svizra Swiss Federal Office of Energy SFOE

Confédération suisse Confederazione Svizzera

•

< 7/7 > Fertig