



Confédération suisse onfederazione Svizzera onfederaziun svizra

#### **WEBINAR ON HIGH TEMPERATURE HEAT PUMPS**

**7 NOVEMBER 2024** 

Case study Gustav Spiess: Integration concept and status

Cordin Arpagaus, OST



#### Outline

- Introduction to the company
- Motivation for a HTHP
- Process, energy consumption, temperatures
- Status of the case study
- Challenges and next steps



**CSD**ENGINEERS

OST

ss Federal Office of Energy SFO



# Introduction & Motivation

- Family-owned company in Berneck, St. Gallen
- 160 employees
- Meat and meat products, such as sausages, ham, and bacon
- February 2023: Start production in new building



**CSD**ENGINEERS

OST













High Temperature Heat Pumps | 07 November 2024 | Online webinar

minipic 🚺 🕻 minipic 🕥 🗱

# Introduction & Motivation

- New production building, including new energy supply
- Waste heat from NH<sub>3</sub> chillers and compressed air generation
- CO<sub>2</sub> reduction 2030/2050
  - Internal goals
  - SFOE agreement about CO<sub>2</sub> reduction
  - SBTi (Science-based Targets Initiative)
    - Reducing its Scope 1 (direct, electricity) and Scope 2 (indirect) greenhouse gas emissions by 50% by 2030 (2018 base)
    - Measuring and reducing its Scope 3 emissions









## Introduction & Motivation



• Process, energy consumption, temperatures



# <section-header>

© Sorgo.at





## HTHP Integration Concept







#### HTHP Integration Concept





Flammable refrigerants would lead to additional costs for safety installations

**CSD**ENGINEERS

OST

ss Federal Office of Energy SFO



# Possible HTHP Technology



Status: 01/2024

**CSD**ENGINEERS

OST



## Energy costs & Economic calculation

| Input parameters                                 |                        |                         |
|--------------------------------------------------|------------------------|-------------------------|
| Heat sink inlet/outlet temperature               | °C                     | 20/115 (1.5 bara steam) |
| Heat source inlet/outlet temperature             | °C                     | 50/45                   |
| Temperature lift                                 | К                      | 65                      |
| Heating capacity                                 | kW                     | 550                     |
| Fuel (gas, oil) price                            | EUR/kWh                | 0.17                    |
| Electricity price                                | EUR/kWh                | 0.25                    |
| Electricity-to-fuel price ratio                  | -                      | 1.47                    |
| CO <sub>2</sub> tax (or subsidies)               | EUR/tCO <sub>2</sub>   | 92.5                    |
| Electricity CO <sub>2</sub> emissions factor     | kgCO <sub>2</sub> /kWh | 0.012                   |
| Fuel CO <sub>2</sub> emissions factor            | kgCO <sub>2</sub> /kWh | 0.201                   |
| Annual operating time (12 h/d, 250 d/a)          | h/a                    | 3'000                   |
| Efficiency of fuel boiler                        | -                      | 0.90                    |
| Maintenance factor (on capital costs)            | -                      | 0.04                    |
| Cost factor for planning & integration           | -                      | 2.0                     |
| $OP(COP = 52.94 \cdot \Delta T_{lift}^{-0.716})$ | -                      | 2.67                    |
| Specific investment costs (HTHP)                 | EUR/kW                 | 840                     |

Schweizerische Eidgenosse Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy SFOE

U

Status: 01/2024

HE

EPFL

O OST Eastern Switzerland University of Applied Sciences



Spiess<sup>°</sup> 9

## Results at reference (Ref) conditions

| Output parameters                          |                         |             |  |
|--------------------------------------------|-------------------------|-------------|--|
| Total investment costs                     | kEUR                    | 924         |  |
| Annual CO <sub>2</sub> emissions reduction | tCO <sub>2</sub> /a (%) | 361 (98%)   |  |
| Annual energy savings                      | MWh/a (%)               | 1'214 (66%) |  |
| Annual fuel cost savings                   | kEUR/a                  | 312         |  |
| Annual electricity costs                   | kEUR/a                  | 155         |  |
| Annual heat pump maintenance costs         | kEUR/a                  | 37          |  |
| Annual CO <sub>2</sub> tax compensation    | kEUR/a                  | 33          |  |
| Annual cost savings                        | kEUR/a                  | 153         |  |
| Discount rate                              | %                       | 5           |  |
| Payback period                             | а                       | 6.0         |  |
| Discounted payback period                  | а                       | 7.3         |  |

Schweizerische Eidgenos:

Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy SFOE

OST

istern Switzerland iversity of Applied Sciences

V

Status: 01/2024



HEIG

EPFL

# Payback & Sensitivity Analysis



HEIG

**CSD**ENGINEERS

onfédération suisse onfederazione Svizzer

wiss Federal Office of Energy SFO

OST

EPFL

Status:

01/2024

11

e

Vurst für Feinschmecker

# **Preliminary Conclusions**

- Payback period influenced by:
  - electricity and fuel prices (electricity-to-gas price ratio),
  - temperature lift (i.e., COP, application),
  - investment costs,
  - operating hours, and
  - cost multiplication factors for planning and integration.
- Waste heat from NH<sub>3</sub> chillers as heat source shows multiplication potential in other Swiss food processes
- Technical support is needed for HTHP integration
- Next steps: Detailed analysis of monitoring data (e.g. heat demand of cooking/smoking cabinets in the Winter season) and Pinch Analysis



**CSD**ENGINEERS

NGENIOUS BY NATUR

TG

Vurst für Feinschmecke

OST

infédération suissi

Confederaziun svizra Swiss Federal Office of Energy SFO

federazione Svizze

# Pinch Analysis – Composite Curve



 Example Composite Curve over a 11 hours timeslice with average steam consumption and waste heat from refrigeration (i.e. simplified with 2 streams)

OST

Confédération suisse Confederazione Svizzera

Swiss Federal Office of Energy SFOE

**CSD**ENGINEERS

IG

- Pinch temperature: 70 °C
- Steam demand: 125 kW
- Waste heat from refrigeration: 190 kW
- (Gustav Spiess AG has an efficient heat recovery network in place in the new production building)





Measured Steam Profile



Challenge:

**CSD**ENGINEERS

ofédération suiss

wiss Federal Office of Energy SFO

OST

HEIG

EPEL

Fluctuating steam demand as an example for one production day

Source: Flimatec AG, Horw

Ihre persönlichen Energieberater.



#### **Measured Steam Profile**



#### **Cumulative steam demand for 51 measurement days**





#### Conclusions

- Steam-generating HTHP is technically feasible
- However, there are economic challenges
  - High-temperature lift (i.e., low COP)
  - High investment costs
  - Low operating hours
  - High electricity prices and low gas prices
- Steam profile and monitoring data are essential for decisionmaking and HTHP sizing (fluctuations, peak demands)
- **Pinch Analysis supports decision-making** (defines integration point, temperatures, heating capacity)



CSDENGINEERS Listem Switzerland Linversity of Applied Sciences

## Published Literature

- Arpagaus, C., Bless, F., Bertsch, S.S., Jansen, Ch: Integration einer dampferzeugenden Wärmepumpe in einer Schweizer Fleischfabrik, 30. Tagung des BFE-Forschungsprogramms «Wärmepumpen und Kältetechnik», 26. Juni 2024, Eventfabrik Bern, <u>Link zum Tagungsband</u> (Poster)
- Arpagaus, C., Paranjape, S., Bless, F., Bertsch, S.S., Jansen, Ch.: Integration of a steam-generating HTHP in a Swiss meat factory, HTHP Symposium 2024, 23-24 January 2024, Copenhagen, Denmark, <u>Link to Book of Presentations</u>
- Arpagaus, C., Bless, F., Bertsch, S., Krummenacher, P., Krummenacher, Flórez-Orrego, D.A., Pina, E.A., Maréchal, F., Calame Darbellay, N., Rognon, F., Vesin, S., Achermann, P., Jansen, Ch.: Integration of High-Temperature Heat Pumps in Swiss Industrial Processes (HTHP-CH), 15 May 2023, 14<sup>th</sup> IEA Heat Pump Conference, Chicago, USA
- Jansen, Ch. (2023): Case Study Gustav Spiess AG, HTHP integration in meat production, Event on High-Temperature Heat Pumps, 24 March 2023, Ittigen, Switzerland



OST CSDENGINEERS

Confédération suisse Confederazione Svizzera

iss Federal Office of Energy SFO

#### Thank you for your attention!





EPFL

HE

OST

wiss Federal Office of Energy SFOE