

Confédération suisse

Confederaziun svizra

Confederazione Svizzera

WEBINAR ON **HIGH TEMPERATURE HEAT PUMPS**

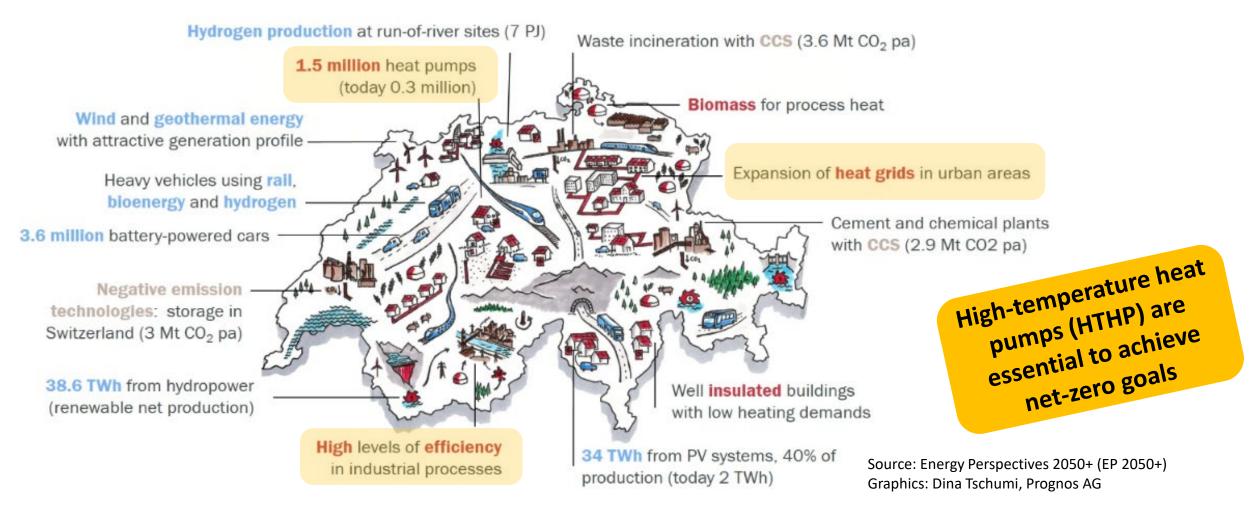
7 NOVEMBER 2024

Guidelines for **HTHP** Integration

Cordin Arpagaus, OST

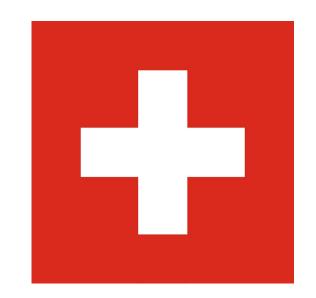
Content

Guidelines for the implementation of HTHPs in industrial processes



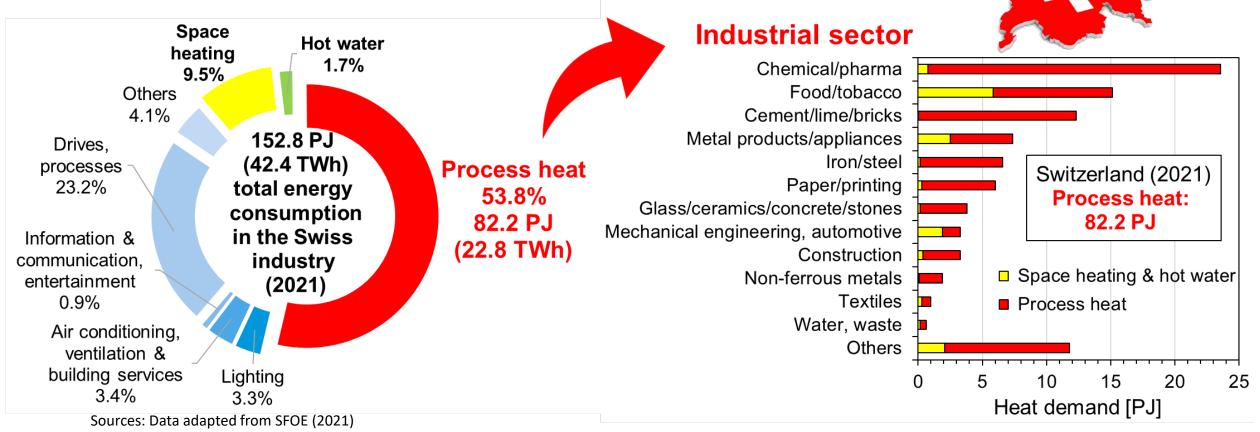
Al-created picture about "guidelines for the implementation of heat pumps in industrial processes" (Adobe Firefly, 21 July 2024)

- Swiss market context
- Current HTHP technologies and demonstration cases
- Possible integration concepts
- Applying Pinch Analysis
- Preliminary assessment checklist
- Technical, financial, and socioeconomic aspects


Objectives for a climate-neutral Switzerland by 2050

High Temperature Heat Pumps | 07 November 2024 | Online webinar

Characteristics of Industrial Landscape in Switzerland


- Proximity of industries to residential areas: industries are often located closer to residential areas, impacts on regulations, environmental impacts, safety and comfort
- <u>Specific industry mix</u>: food and pharmaceutical/biotech sites with specific thermal energy needs
- <u>Multi-layered regulatory framework:</u> complex, municipality, canton, and national levels
- <u>Subsidy landscape</u>: supports adopting renewable energy technologies, including heat pumps, more energy-efficient and environmentally friendly
- <u>CO₂ taxes on all fossil thermal fuels</u> (e.g., fuel oil, natural gas): incentivize carbon emissions reductions, CO₂ levy is at CHF 120 per ton of CO₂

CSDENGINEERS

Swiss Market Context

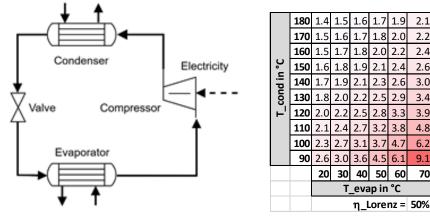
Process heat demand (> 80 °C) in the Swiss industry (2021) representing 54% of all energy needs and showing the potential for HP and HTHP integration in the industrial sector

CSDENGINEERS

OST

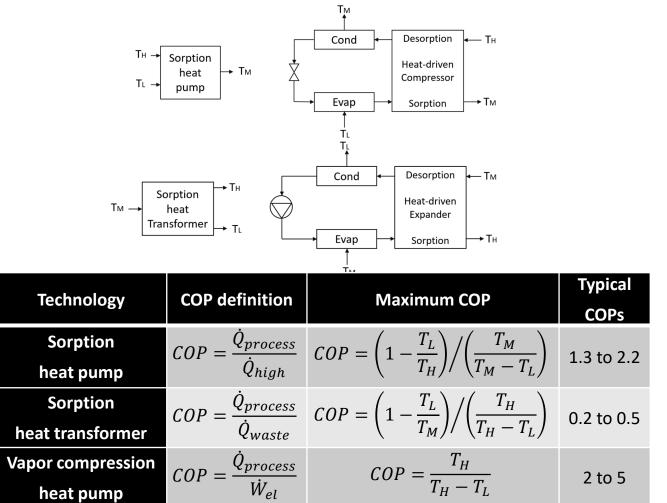
Swiss Market Context

Potential energy savings through industrial HTHPs in Switzerland (top-down estimate)

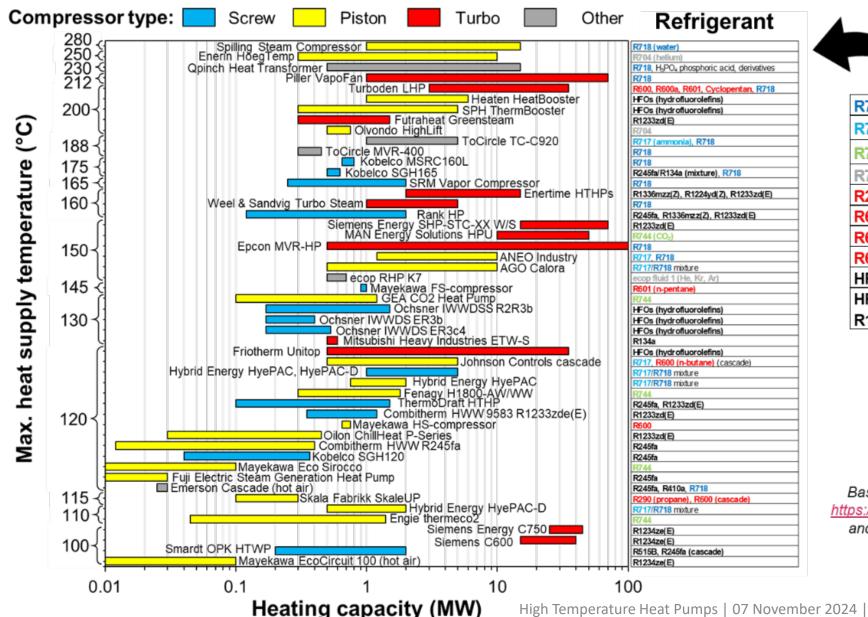

	Energy consumption	Data source / Estimations
Swiss industry	42'601 GWh	152.8 PJ as of 2021
Process heat demand	22'919 GWh	53.8% (>80 °C)
Process heat and steam demand below 150 °C	6'876 GWh	30% (estimate based on Heat Roadmap Europe)
Energy savings potential through the use of HTHPs (= addressable process heat share)	2'750 GWh (6.5% of the process heat demand)	40% (moderate estimate of conversion rate to HPs and HTHPs based on technical analysis within SCCER EIP)

Types of HTHP Technologies

4.8

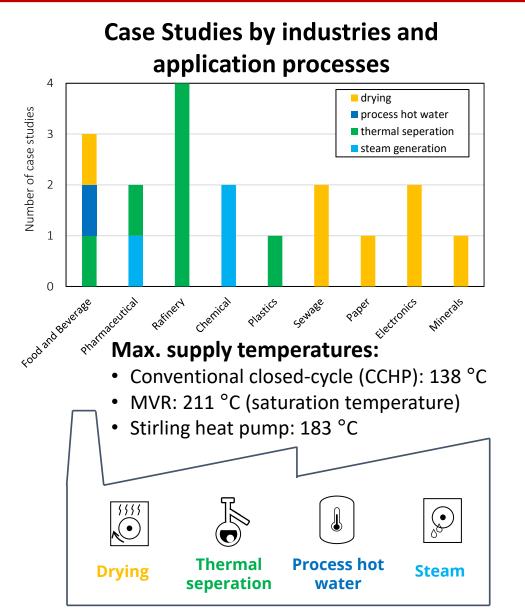


Electrically-driven HTHPs


- Single-stage cycle
- Economizer cycle
- Twin or multi cycles
- Cascade cycle
- Condenser outlet split ejector cycle
- Transcritical cycle
- Joule cycle (or reverse Brayton cycle) •
- Stirling cycle
- Mechanical vapor recompression (MVR) •
- Steam compression systems

Thermally-driven HTHPs

Market Overview of HTHPs



Refrigerant

R718 (water) R717 (NH₃, ammonia) R744 (CO₂) R704 (helium) R290 (propane) R600 (n-butane) R600a (iso-butane) R601 (n-pentane) HFC (R245fa, R134a, R410a) HFO (R515B, R1234ze(E), R1224yd(Z), R1233zd(E), R1336mzz(Z))

Based on data from IEA HPT Annex 58 (2023) https://heatpumpingtechnologies.org/annex58/task1 and Arpagaus et al. (2022): China Heat Pump Conference (YouTube Video Recording)

Overview of Demonstration Cases

No.	Supplier	Industry	Process	Heats	ource	-	Heat	sink		НР Туре	Refrigerant	Compressor	Capacity	COP _H	Op. hours	Ref.
				Unit Operation	T _{out} [°C]	T _{in} [°C]	Unit Operation	T _{out} [°C]	T _{in} [°C]				[kW]		[h/a]	
1	n. a.	beverage	alcoholic distillation	product cooling	75	78.3	distillation	140	n. a.	M VR	n. a.	n. a.	350	5.2	n. a.	[1]
2	Mayekawa	electronic	coil drying	electro- painting cooling	25	30	drying	120	20	ССНР	R744	piston	89	3.1	n. a.	[1]
3	AMT/AIT	food	starch drying	waste heat	72	76	drying	138	96	CCHP	R-1336mzz(Z)	screw	374	3.2	4,000	[2]
4	Olvondo	pharma- ceutical	recooling	recooling heat	34	36	steam generation	183	178	Stirling HP	R704	piston	2,250	1.7	6,100	[2]
5	Kobelco	sewage	sludge drying	exhaust dry ing air	93	93	steam generation	160	160	M VR	R718	twin-screw, roots blower	675	2.9	n. a.	[2]
6	Kobelco	refinery	bioethanol distillation	process cooling	60	65	distillation	115	110	CCHP + Flash Tank	R245fa	twin-screw	1,850	3.5	n. a.	[2]
7	MHI	electronic	coil dry ing	waste heat	50	55	drying	130	70	CCHP	R134a	centrifugal	627	3.0	n. a.	[2]
8	Piller	plastics	thermal seperation	exhaust vap our	60	60	steam generation	131	126	M VR	R718	turbo (8 blowers)	10,000	4.4	8,000	[2]
9	AMT/AIT	minerals	brick drying	exhaust dry ing air	80	84	drying	121	96	CCHP	R-1336mzz(Z)	piston (8 compr.)	296	5	4,000	[2]
10	Spilling	pulp and paper	pulp drying	exhaust vap our	105	133	steam generation	201	n. a.	M VR	R718 piston (4 LT-, 2 HT- cylinders)		11,200	4.2	7,500	[2]
11	Spilling	chemical	chemical	exhaust vap our	105	152	steam generation	211	n. a.	M VR	R718	piston (4 LT-, 2 HT- cylinders)	12,000	5.3	7,500	[2]
12	Rotrex, Epcon	sewage	sludge drying	surp lus steam	100	n. a.	steam generation	146	n. a.	M VR	R718	turbo (2 stages)	500	4.5	n. a.	[2]
13	SkaleUP	dairy	process hot water	(re)cooling	12, 0	20, 5	process hot water	115	95	ССНР	LT-C: R290, HT-C: R600	piston	300	2.5, 2.3	6,500	[2]
14	QPinch	chemical	steam production	exhaust vap our	120 -	- 145	steam generation	140	- 185	heat trans- former	$\mathrm{H}_{2}\mathrm{PO}_{4}$	heat-driven	2,900	0.45	2,500	[2]
15	Huayuan Taimeng	refinery	ethyl- benzene	waste heat	95	120	steam generation	152	n. a.	heat trans- former	LiBr-H ₂ O	heat-driven	7,553	0.48	n. a.	[2]
16	Shanghai Nuotong	beverage	alcoholic distillation	air	n. a.	18.9	steam generation	120	90	CCHP + Flash Tank + MVR	LT-C:R410a, HT-C:R245fa	screw	180	1.85	n. a.	[2]
17	Huayuan Taimeng	refinery	alkyl- benzene	waste heat	86	127	steam generation	150	n. a.	heat trans- former	LiBr-H ₂ O	heat-driven	5,100	0.48	n. a.	[2]
18	Shandong Zhangqiu Blower	refinery	ethanol distillation	exhaust vap our	76	n. a.	steam generation	116	n. a.	M VR	R718	centrifugal	n. a.	7.68	7,000	[2]

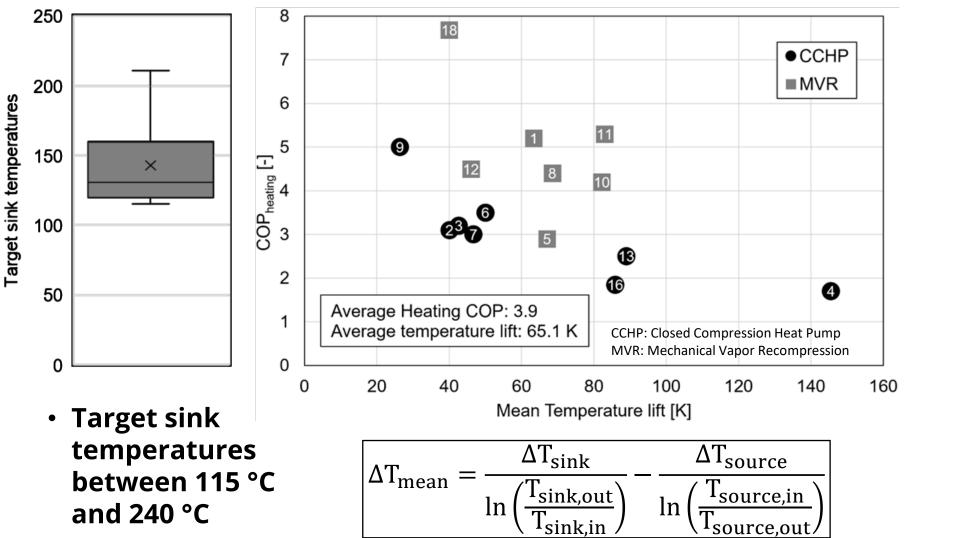
U

chweizerische Eidge

Confederaziun svizra Swiss Federal Office of Energy SFOE

Confédération suisse Confederazione Svizzera OST

High Temperature Heat Pumps | 07 November 2024 | Online webinar


HEIG

EPEL

CSDENGINEERS[†]

NGENIOUS BY NATURE

Indicative COP values

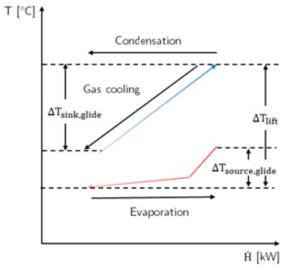
1	n. a.	distillation	78.3	140	MVR
2	Mayekawa	drying	30	120	CCHP
3	AMT/AIT	drying	76	138	CCHP
4	Olvondo	steam generation	36	183	Stirling HP
5	Kobelco	steam generation	93	160	MVR
6	Kobelco	distillation	65	115	CCHP + Flash Tank
7	MHI	drying	55	130	CCHP
8	Piller	steam generation	60	131	MVR
9	AMT/AIT	drying	84	121	CCHP
10	Spilling	steam generation	133	201	MVR
11	Spilling	steam generation	152	211	MVR
12	Rotrex, Epcon	steam generation	100	146	MVR
13	SkaleUP	process hot water	20, 5	115	CCHP
16	Shanghai Nuotong	steam generation	18.9	120	CCHP + Flash Tank + MVR
18	Shandong Zhangqiu Blower	steam generation	76	116	MVR

HEIG

CSDENGINEERS

NGENIOUS BY NATURE

onfédération suisse onfederazione Svizzer


Confederaziun svizra Swiss Federal Office of Energy SFOE OST

EPFL

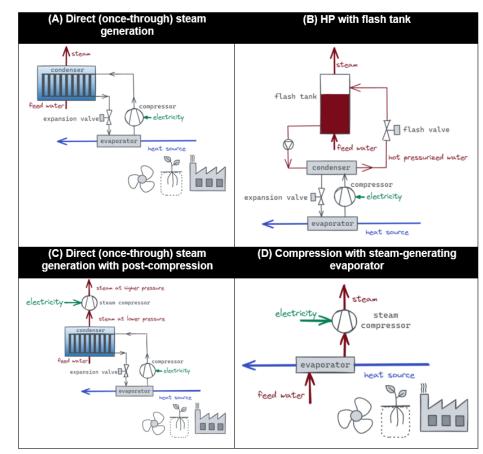
Source: IEA HPT Annex 58 (2023)

Three main application types

large temperature glide

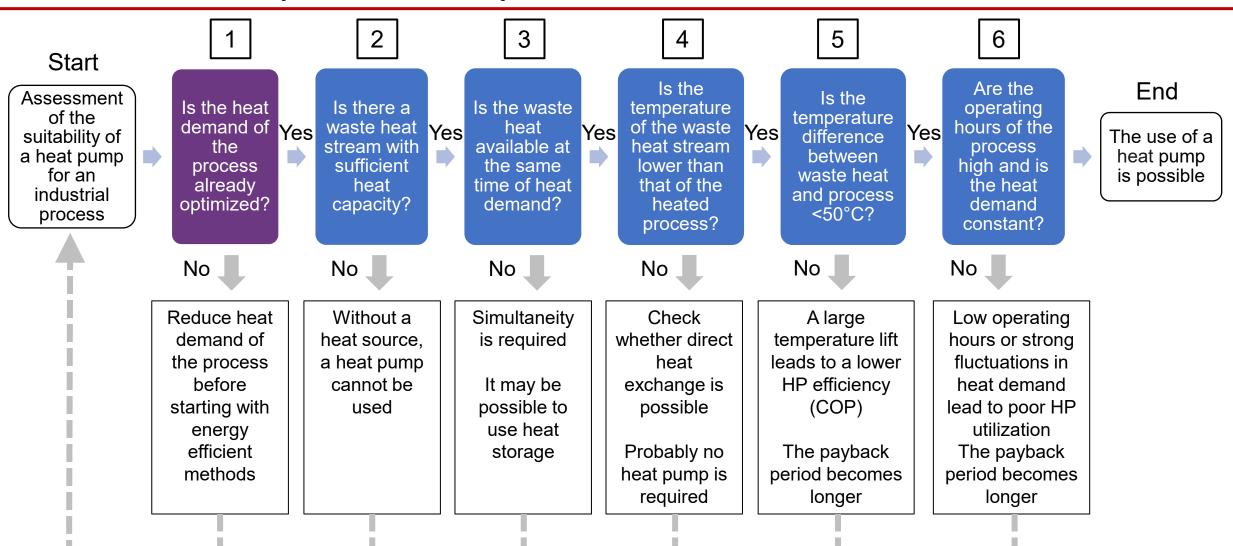
- hot water
- (A) Single-stage, multistage, and cascade HP cycle (using HC or HFO)
- (B) Transcritical singlestage cycle (using CO₂)
- (C) Hybrid absorption compression HP (using ammonia/water)

- e.g. drying processes
 - Single-stage or cascaded transcritical cycle (CO₂, HC or HFO)
- Stirling cycle
- Reversed Brayton cycle


Source: IEA HPT Annex 58 Task 1 and Task 2 reports and final webinar

steam generation

CSDENGINEERS


OST

viss Federal Office of Energy SFO

High Temperature Heat Pumps | 07 November 2024 | Online webinar

Preliminary Feasibility Checklist

Feedback loop High Temperature Heat Pumps | 07 November 2024 | Online webinar

Source: Arpagaus (2019): Book «Hochtemperatur Wärmepumpen»

HEIG

EPFL

CSDENGINEERS

onfédération suisse onfederazione Svizzera

wiss Federal Office of Energy SFOE

OST

Inputs for preliminary assessment

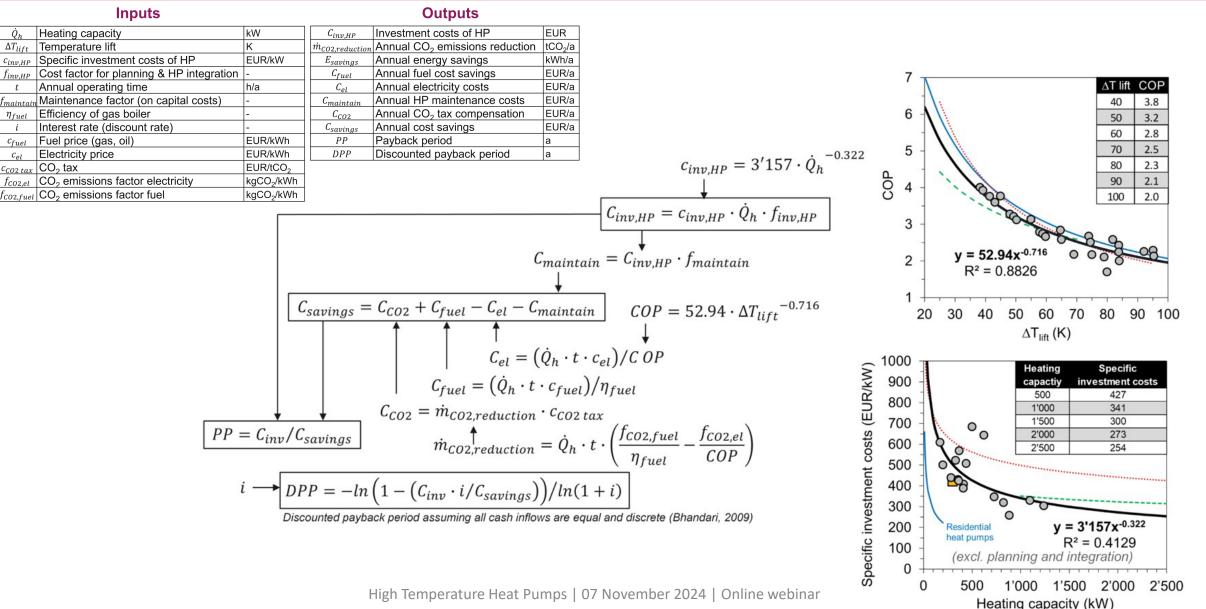
\dot{Q}_{sink}	Technical parameters	Unit	Heat sour	rce	Heat sir	nk
Qsink M _{sink}	Medium (water, steam, air, oil, waste, etc.)					
$C_{p,sink}$	Flow temperature	°C/bar(g)	T_1		<i>T</i> ₃	
Sink ◀	Return temperature	°C	T_2		T_4	
T_3 T_4	Heat source/sink capacity (cooling/heating demand)	kW	<i>Q</i> source			
	Mass flow	kg/s	\dot{m}_{source}		\dot{m}_{sink}	
НТНР	Heat capacity	kJ/kg K	C _{p,source}		C _{p,sink}	
	Operating hours (time availability)	h/year				
$T_2(\mathbb{N})^{4}T_1$	Economic parameters					
Source	Electricity costs	CHF/kWh				
•	Costs of natural gas or oil	CHF/kWh				
$Q_{source} \ \dot{m}_{source}$	Heat price at sink temperature (e.g., gas price for burner)	CHF/kWh				
C _{p,source}	Heat price at source temperature (mostly free waste heat)	CHF/kWh				

chweizerische Eidg

Confederaziun svizra Swiss Federal Office of Energy SFOE

Confédération suisse Confederazione Svizzera Oost

CSDENGINEERS


İĞ

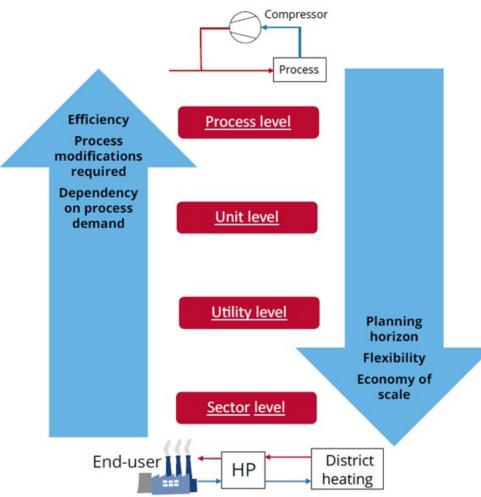
Additional inputs:

Application	Specification	Examples or unit
Type of industry		Diary / Pharma / Chemical
Type of application		Drying / Humidification / UHT
Current source for applied heat		Electric, gas, or oil burner
Heat pump location on site		Existing space / New build
Distance to heat source/sink		Meters
Electrical voltage level		400/600 V
Electrical power consumption		kW (see specifications of HPs)
Internet access (fixed IP)		Yes/No
Other information		

High Temperature Heat Pumps | 07 November 2024 | Online webinar

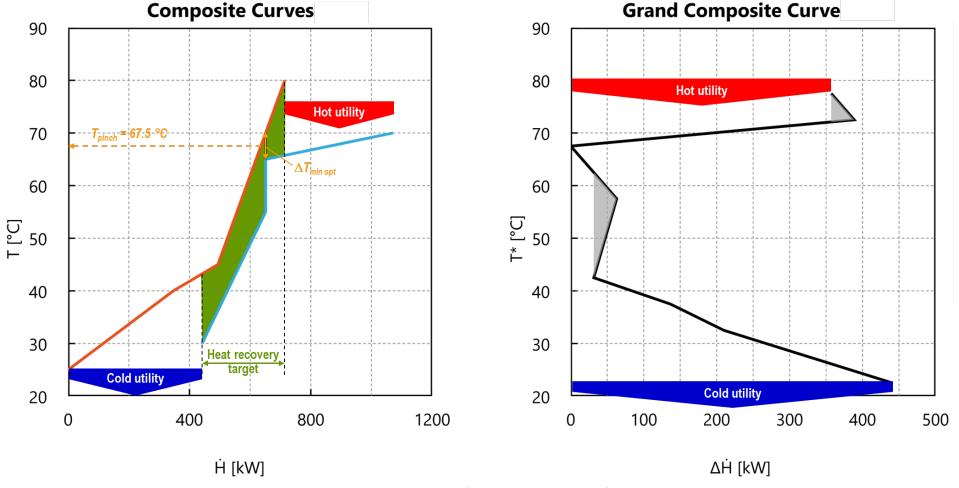
Economic evaluation – cost model

CSDENGINEERS


) OST

Confédération suisse Confederazione Svizzera Confederaziun svizra

Confederaziun svizra Swiss Federal Office of Energy SFOE


Different integration levels for heat pumps and their effects

- Process stream level: heat of an exhaust stream (e.g., vapor from an evaporation process) is upgraded and fed back as heating steam (typically with MVR)
- Unit (or process) level: heat of one or several hot streams or waste heat sources of a process unit supplies the HP
- <u>Utility level (site level)</u>: Waste heat is upgraded and distributed via the existing utility network
- Sector level (district, area level): heat source(s) and sink(s) do not belong to industrial site

Composite Curves (hot and cold)

Example process of Pinch

U

chweizerische Eidge

Confederaziun svizra Swiss Federal Office of Energy SFOE

WasteWaterCoolin

ProcessWaterHeating

AirCompressorCooling

TemperatureHolding

Confédération suisse Confederazione Svizzera

Stream (heat transfer requirement)

OST

High Temperature Heat Pumps | 07 November 2024 | Online webinar

HEIG

ṁ

[kg/s]

5.50

2.00

1.50

20.00

CSDENGINEERS

Tin

[°C]

45.0

30.0

80.0

65.0

Type

Hot (heat source)

Cold (heat sink)

Hot (heat source)

Cold (heat sink)

NGENIOUS BY NATURE

Tout

[°C]

25.0

55.0

40.0

70.0

EPEL

Cp

[kJ/(kg K)]

4.20

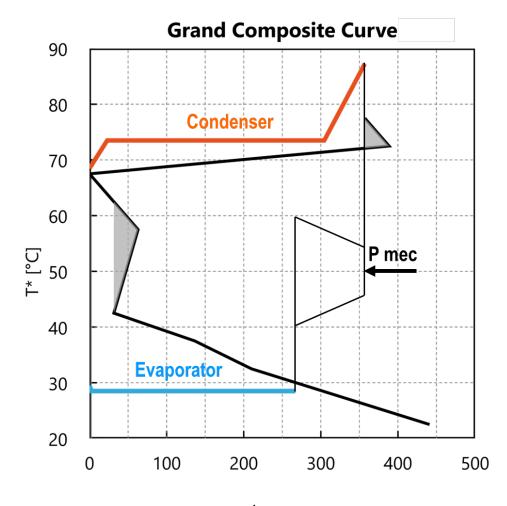
4.20

4.20

4.20

ΔĤ

[kW]


462

210

252

420

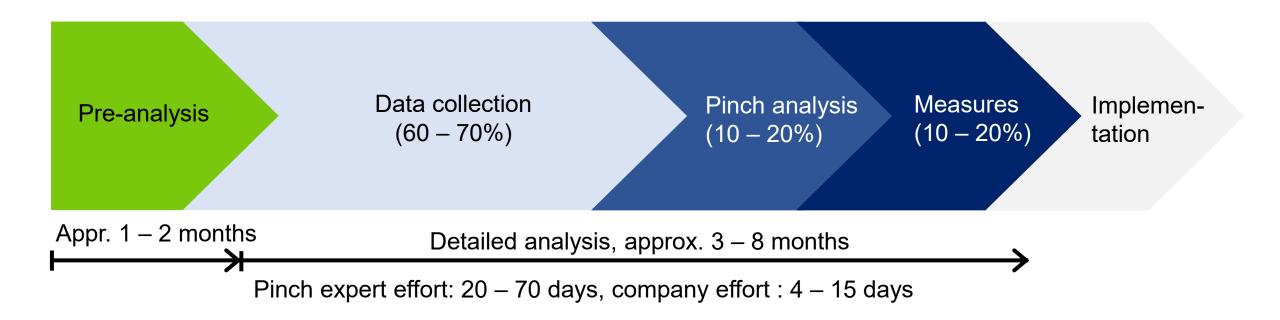
Optimal integration of a vapor compression HP by interpreting the GCC

Golden rules:

(1) Do not cool hot streams above the pinch temperature using cold utility

CSDENGINEERS

Confédération suisse Confederazione Svizzera


wiss Federal Office of Energy SFO

- (2) Do not heat cold streams below the pinch temperature with hot utility
- (3) Avoid heat transfer across the pinch point from hot to cold streams

Applying Pinch Analysis

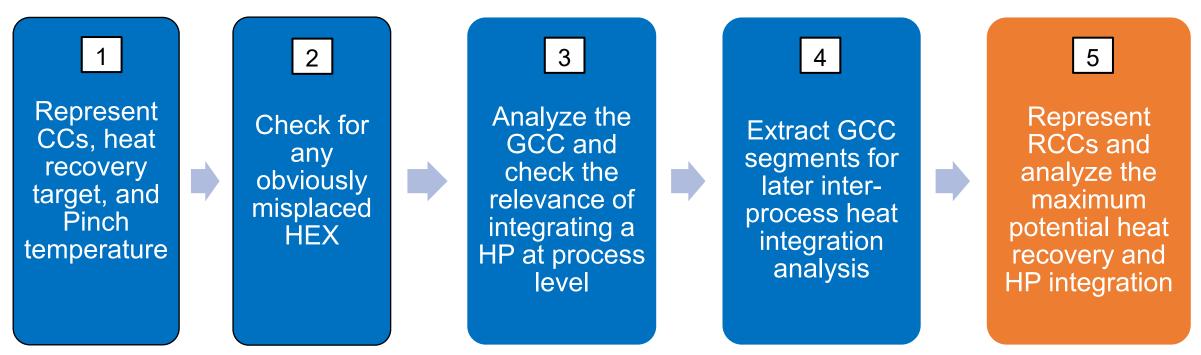
Main steps of a Pinch analysis and typical effort and duration

Applying Pinch Analysis

Typical costs and SFOE subsidies for the two-phase approach

(conditions as of 1 September, 2024) Cash paid to In-house Pinch expert suisseénergie services Company Company 40% 60% 20% Financing 60% 40% 20% Pinch expert: Costs of services Pinch expert: 80% 20% 20% 80% Total costs of study Total costs of study CHF 10'000 to 25'000 CHF 20'000 to 80'000 detailed Go Pre-**Detailed Pinch** analysis analysis Analysis relevant? Specifications and subsidy conditions see Pinch website: (FR) Analyse Pinch: économiser de l'énergie dans la production (suisseenergie.ch) (DE) Sparen Sie in der Produktion dank der Pinch-Analyse Energie Go No

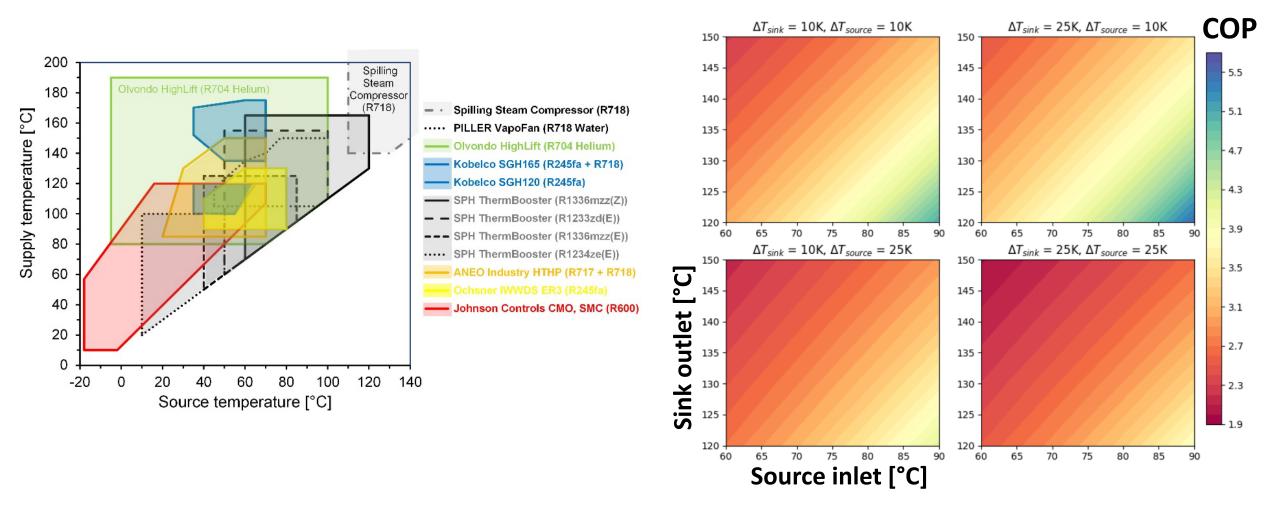
Applying Pinch Analysis


Workflow for targeting and optimizing an industrial site's heat recovery and upgrading via HP(s), including several processes

Stage A: Heat integration potential of individual processes Stage B: Inter-process heat integration potential

HEIG

Osst CSDENGINEERS *

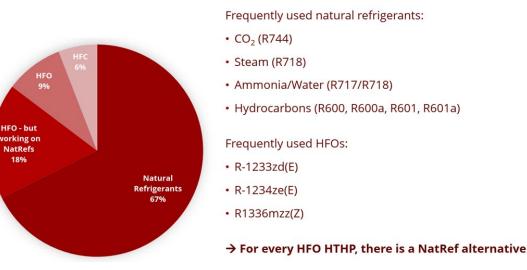

onfédération suisse onfederazione Svizze

Technical Aspects

Heat Pump Operation and Performance

Technical Aspects

- Infrastructure Requirements: location for the installations, power supply, distribution network and thermal storage, automation system
- <u>Safety Aspects:</u> refrigerant, redundancy strategy, relevant standards:
 - Chemical Risk Reduction Ordinance (ORRChem)
 - Protection against major accidents (Major Accidents Ordinance, MAO)
 - Ordinance on Air Pollution Control (OAPC)
 - Directives on potentially explosive atmospheres (ATEX)
 - Pressure Equipment Directive (PED) or
 - Swiss National Accident Insurance Fund (SUVA)


Maintenance

• Technology Lock-in

Refrigerants used in current HTHPs

OST

CSDENGINEERS

Source: IEA HPT Annex 58

onfédération suisse

iss Federal Office of Energy SFO

Funding programs for industrial heat pumps in Switzerland

Funding program	Pinch Analyses	Heat Pumps for Process Heat	Klimaprämie (Climate bonus)	Pilot and Demonstration				
Program Manager	EnergieSchweiz (SuissEnergie)	EnergieSchweiz	EnergieZukunft Schweiz	SFOE (Swiss Federal Office of Energy)				
Financing Amount	 SFOE Pre-analyses: max. 60% of total costs Pinch analyses: Max. 40% of total costs 	 SFOE Max. 40% of additional costs compared to conventional technology (e.g., oil or gas boiler) 	 KliK Foundation 0.18 CHF/kWh heat About 360 CHF/kW heat at 2'000 h annual operation 	 SFOE Up to 40% (60%) of non- amortizable supplementary costs 				
Criteria	 Using PinCH Software Trained experts Publication of findings (summary, final report) 	 Industrial process heat Payback >4 years Funding request before construction starts Companies with a CO₂ tax exemption are examined individually 	 Replacement of oil/gas boiler with heat pump Order not yet placed CO₂ savings to be transferred to Energie Zukunft Schweiz 	 Application potential Innovative content Pilot: TRL 4 to 7 Demonstration: TRL 7 to 9 Publication of findings (final report) 				
Infos	Website, Flyer	Website, Flyer	Website, Flyer	Website				

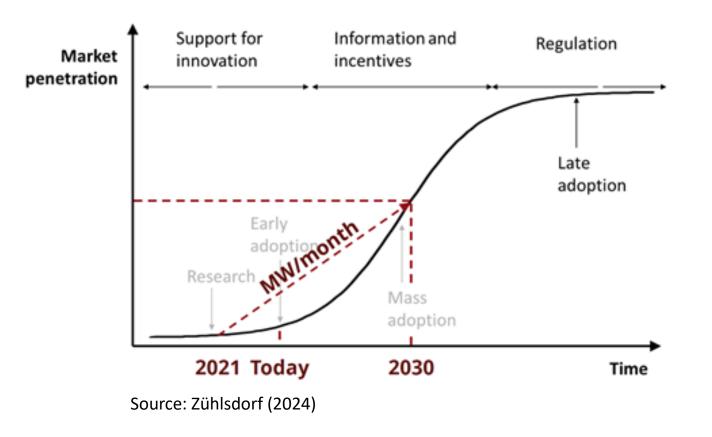
^[1] <u>https://www.energieschweiz.ch/beratung/pinch/</u> (DE) and <u>https://www.suisseenergie.ch/conseil/pinch/</u> (FR)

^[2] https://pubdb.bfe.admin.ch/de/publication/download/8357 (DE) and https://pubdb.bfe.admin.ch/fr/publication/download/8357

¹³ https://www.energieschweiz.ch/prozesse-anlagentechnik/industrielle-waermepumpe/ (DE) and https://www.suisseenergie.ch/prozessus-technique-dinstallations/pompes-industrie/ (FR)

^[4] https://pubdb.bfe.admin.ch/de/publication/download/10753 (DE) and https://pubdb.bfe.admin.ch/fr/publication/download/10753 (FR)

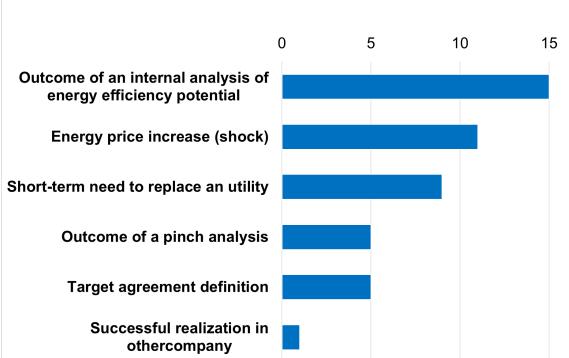
^[5] <u>https://www.klimapraemie.ch</u> (DE) and <u>https://www.primeclimat.ch</u> (FR)


¹⁶¹ https://energiezukunftschweiz.ch/wAssets/docs/foerderprogramme/klimapraemie-factsheet-grosse-anlagen_2022.pdf (DE) and https://energiezukunftschweiz.ch/wAssets/docs/foerderprogramme/klimapraemie-factsheet-grosse-anlagen-fr.pdf

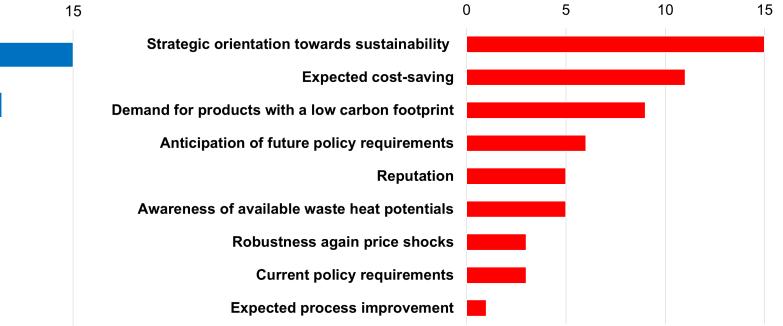
^{1/1} https://energiezukunftschweiz.ch/wAssets/docs/foerderprogramme/klimapraemie-detaillierte-foerderkriterien_wp_de.pdf (DE) and https://energiezukunftschweiz.ch/wAssets/docs/foerderprogramme/klimapraemie-detaillierte-foerderkriterien_wp_dr.pdf

¹⁸¹ https://www.bfe.admin.ch/bfe/en/home/research-and-cleantech/pilot-and-demonstration-programme.html

S-curve of the HTHP technology adoption

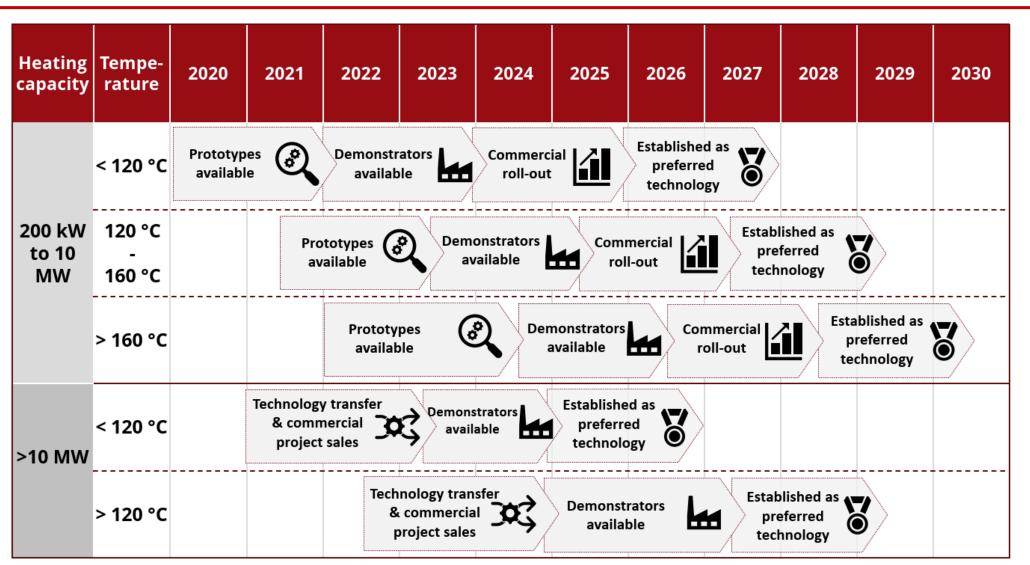

Favorable market conditions:

- Support for innovation and research
- More information
- Economic incentives
- Technology awareness
- Commitment to sustainability and decarbonization
- Involvement of various stakeholders



Drivers for HTHP adoption

Short term drivers to initiate a HTHP project



Long term drivers to initiate a HTHP project

Source: Survey among participants from industry, manufacturers, research, and government institutions at the Workshop on HTHPs held in Ittigen, Switzerland, in March 2023

Development Perspectives

Source: IEA HPT Annex 58 Task 1 Report (2023): Development perspectives for HTHPs towards 2030

CSDENGINEERS

NGENIOUS BY NATUR

onfédération suisse onfederazione Svizzera

Confederaziun svizra Swiss Federal Office of Energy SFOE OST

HEIG

EPFL

Summary

- Confederation svizza Confederation svizza Confederazion svizza Swiss Federal Office of Emergy SFOE
- HTHPs provide in energy savings and decarbonization
- Key target audience for the integration guidelines are engineers, managers, technicians, and planners
- There are different integration levels (process, unit, utility, sector)
- Use the feasibility checklist and preliminary assessment for integration
- Apply Pinch Analysis, which is relevant for integration
- Consider key principles and practical applications
- Consider costs, funding, and subsidies
- Have a future outlook and follow market trends

Backup Slides

CSDENGINEERS*

Confédération suisse Confederazione Svizzera

Confederaziun svizra Swiss Federal Office of Energy SFOE HEIG

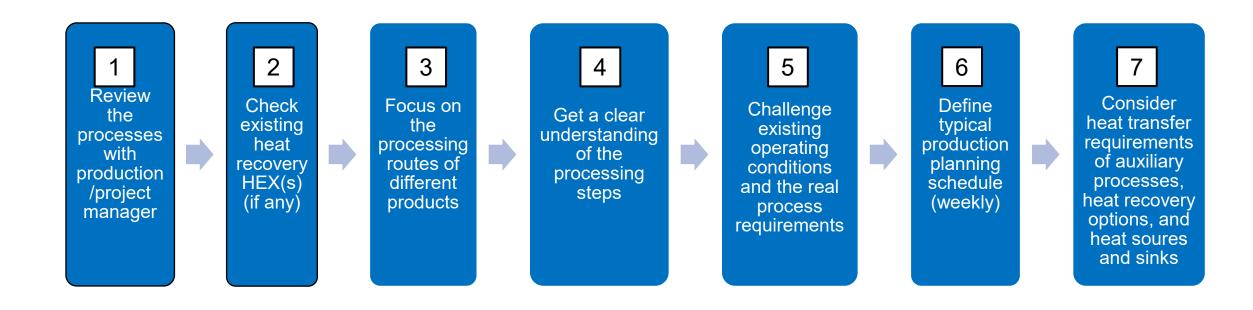
Overview of Demonstration Cases

Overview of integration concepts and HP concepts

		Process		S	ourc	e			Sink				Те	mp	erat	ure r	Process Source Sink Temperature ranges [°C]													
		Unit Operation	Production Pattern	Medium	T _{in} [°C]	T _{out} [°C]	∆T _{Glide} [K]	Medium	T _{in} T _{out} [°C] [°C]	∆T _{Glid} [K]	10 20	30 40	99 99	80	100	120 130	150	170	200 210	220 230	240 250	Mean ∆T _{Lift} [K]	Integration Level	Heat Pump Concept	Heat Pump Application					
1.	Baking ovens	Baking	Continuous	Humid air	110 90	90 65	20 25	Air	180 220 150 180	40 30												100 88	Unit	Transcritical cascaded	Heating along large temperature glides					
2.	Molded fiber dryers	Drying	Continuous	Humid air	150	70	80	Air	150 250	100												90	Process	Reversed Brayton cycle	Heating along large temperature glides					
	inder urgers				150		50	Steam	150 165	15												33		Single HP	Steam generation					
					50	20	30		64 210	146												102		Cascaded HP						
	6			Humid air	70	15	55		15 210	195												70		Transcritical cascaded	Handford allowed areas					
3.	Spray	Drying	Continuous		50	23	27 28	Air	64 210	146 195				++-			++-	+++	++-		+	101	Process	Reversed Brayton cycle	Heating along large					
	Drying			Water	40 40	12 12	28		15 210	195			++	++			++-	+++	++-	\square	++	87 87		Cascaded HP Transcritical cascaded	temperature glides					
				vvaler	40	12	28		64 210	146				++			╈	HH	++-			111		Reversed Bravton cycle						
	Brick		Continuous	Air (Water	50	- (*)	- (*)	Air (Water	- (*) 180	- (*)												- (*)		Cascaded HP	Heating along large temperature glides					
4.	Drying	Drying	Continuous	intermediate circuit)	50	- (*)	- (*)	intermediate circuit)	- (*) 90	- (*)												- (*)	Unit	Single HP	Heating along large					
5.	Painting & Drying	Drying	Non-continuous	Humid air	28	22	6 6	Liquid	130 150 70 90	20 20												115 80	Unit	Cascaded HP	Heating along large temperature glides					
6.	Biosludge drying	Drying	Continuous	Steam	120	100	20	Steam	100 146	46												13	Process	Steam compression	Steam generation					
7.	Plastic granules	Drying	Continuous	Humid air	60	30	30	Air	50 80	30												20	Process	Transcritical single stage	Heating along large temperature glides					
8.	Batch Sterilization	Thermal	Batch	Water	40	20	20	Water	100 150	50												95	Utility	Trancritical HP	Heating along large temperature glides Steam generation					
	Sterilization	preservation			80	52	28	Steam	80 130	50												39		Flash tank + MVR						
		Thermal			65	60	5	Steam	110 115	5												50		HP + flash tank						
9.	Distillation	separation	Continuous	Water	27	22	5	Steam	105 115		10			\square			\square		++	Ш		86	Utility	Cascaded HP	Steam generation					
					45	40	5	Steam	100 115	15				-					++-			65		SGHP/Flash tank + MVR						
		Utility water heating			60	50	10	Water	82 95	13		\square					++	+++	++	\square		34		Single HP	Hot water production					
10.	Anodizing	Thermal treatment Utility water heating	Non-continuous	Water	20	15 35	5 5	Steam Water	00 05	10 5			++	╈			++	+++	++	++	+	98 45	Unit	Cascaded HP Single HP	Steam generation Hot water production					
		Thermal treatment			40 20	15	5	Steam	110 120	10			++			45		Cascaded HP	Steam generation											
11	Oil and Gas	Thermal	Continuous	Oil	70	50	20	Oil	85 105	20				T					T			35	Process	Transcritical single stage	Heating along large temperature glides					
	Processing	separation	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Johunuous	Water-glycol	ater-glycol 45 35	10	0.	100 140	40	++						+	+++	++	H		80	Supply	Cascaded HP	Hot water production
12.	Extrusion cooking	Thermal treatment	Continuous	Humid air	50	45	5	Water	100 160	60												83	Process	Transcritical single stage	Hot water production					
								(*: deper	nding o	n the	eex	aci	t de	esi	ign	and	d a	ppl	ica	tior	ר)									

High Temperature Heat Pumps | 07 November 2024 | Online webinar

CSDENGINEERS


OST

Confédération suisse Confederazione Svizzera

Confederaziun svizra Swiss Federal Office of Energy SFOE

Preliminary steps before definition of heat transfer requirements

Technical Aspects

HTHP Specifications

- Footprint and weight of the HTHP
- Minimum working duration after start-up, continuous operation capability and duration without maintenance
- Managing high variations in demand and source or sink temperatures (to maintain efficiency and stability)
- Minimum part-load functioning (% of design capacity)
- Start-up and shutdown times and capacity ramping rates
- Noise emissions and vibration (with available mitigation measures to comply with maximum allowed noise emissions)
- Precision of the output temperature
- Refrigerant type
- Material requirements
- Integration in automation system
- Electrical requirements (maximum voltage, current and frequency; standstill power; electrical noise and harmonic filter)
- Type of oil in the machine (for example, any requirement for food-grade oil to be specified)
- Environmental working conditions (humidity, ambient temperature)