

Swiss Federal Office of Energy SFOE

chweizerische Eidgenossenscha

Confédération suisse onfederazione Svizzera onfederaziun svizra

WEBINAR ON HIGH TEMPERATURE HEAT PUMPS

7 NOVEMBER 2024

ELSA Dairy case study: Integration concept & status

Pierre Krummenacher, HEIG-VD

Outline

- ELSA : big picture
- ELSA : energy efficiency
- CIP 0 / 3 / 4 : candidate process for HTHP integration
- Cleaning-in-Place (CIP) process
- CIP 0 measurements
- Results
- Pinch Analysis
- HP integration concept
- Comparison of HP concepts
- Conclusions

ELSA: Big picture

Schweizeriche Eidgeweissenschaft Confederazione Suzera Confederazione Suzera Swise Federal Office of Energy SPOE

- Founded 1955 as a canning factory
- Dairy products since 1960
- Step-by-step site expansion
- Key data (2021):
 - 640 employees
 - 72 GWh/y heat (gas, wood ships)
 - 42 GWh/y electricity
 - 1'800'000 m³/y city water
 - 260'000 t/y milk processed into:
 - 160'000 t/y milk (UP, UHT)
 - 52'000 t/y yogurts
 - 4'000 t/y cottage cheese
 - 6'000 t/y curd
 - 420 t/y cream
 - Desserts
 - Plant based products

ELSA : energy efficiency measures

- Various «local» opportunities implemented
- Measures mainly on utilities:
 - Ice water production
 - Ice water distribution
 - Waste heat recovery loop (UP, flash steam, NH₃, ...) for hot water preheating / heating, HVAC
 - ..
- Pinch Analysis (PA) in 2013 → proposed measures (% savings)
 - Improved process internal heat recovery & optimisation of production logistics (-3%)
 - Process optimisation (-8%)
 - Site level HP integration (28/40 & 60/75°C HR loops & storage tank) (-20%)

Measures partially implemented, but not site-wide HP

- 2016: 12 t/h wood ships steam boiler → 80% of the steam consumed on site
- Further measures, road map 2030, ...
- Hard constraints: densely-packed production facilities, no free space for HP, piping, storage

OST

Swiss Federal Office of Energy SFOE

CSDENGINEERS

CIP: candidate process for (HT)HP

- CIP stations 0 / 3 / 4 at the same place
- 515'000 m³/y city water (28% of site)
- ~ 15 GWh/y steam at 3.5 bar(g) (21%)
- Large waste heat source available in immediate vicinity of CIP 0 / 3 / 4 :
 - CIP wastewater (~ 35 °C on average)
 - NH₃ from ice water production (~ 20 °C), preferred source to reduce cooling tower load and save electricity
- Production processes unchanged !
- Two HP integration concepts:
 1. 4.5 bar(a) steam generating HP (SGHP)
 2. NH₃ HP to supply CIP with 60 °C hot water both with NH₃ from chillers as a heat source

CSDENGINEERS

Wastewater to drain 15 - 55°C

Cleaning-In-Place (CIP)

CIP procedure includes typically 5 steps:

- 1. Pre-rinse:
 - A. Fresh water => product recovery
 - B. Recycle water at 40-60 °C to remove sugar and melt fats
- 2. Caustic circul. (~ 85 °C): Remove proteins and fats
- 3. Rinse (~ 45 °C):

Recycled water to purge dissolved soil and remove any detergent residues

4. Acid circul. (~ 65 °C):

Dissolve mineral salts and deposits left by hard water

5. Final Rinse:

A. Lukewarm fresh water

B. Cold fresh water

to remove any residues

ightarrow recycled water tank

CIP 0 heat & water measurements

1. Soda (SU) tank:

- Heated by steam injection in circul. loop
- Intermittent make-up with fresh water (not preheated)

2. Acid (AC) tank:

- Heated by steam injection in circul. loop
- Intermittent make-up with fresh water (not preheated)
- **3. Recycled water (ER):** No heating (variable T)
- 4. In-line HEXs:
 - Steam heated
 - Ensure heating of CIP media to circuit specific set-point tmperature

Measurements

Temperature & mass flow for:

- SU & AC tanks T holding
- In-line HEXs circuits B & C

CSDENGINEERS

н

OST

Results: Heating by in-line HEXs

Swiss Federal Office of Energy SFOE

OST

infédération suissi

onfederaziun svizra

nfederazione Svizzer

SU: Soda AC: Acid ER: Recycled water

High Temperature Heat Pumps | 07 November 2024 | Online webinar

HEIG

CSDENGINEERS

NGENIOUS BY NATURE

EPFL

Results: Heat & water balance CIP

Make-up water CIP 0+3+4

SU tanks (90 °C)

- 9'820 m³/y as fresh water
- 5'553 m³/y as injected steam

AC tanks (65 °C)

- 10'765 m³/y as fresh water
- 180 m³/y as injected steam

Note:

The heat supplied to AC tanks as injected steam is much lower than that needed for make-up water heating \Leftrightarrow the return temperature is higher than the flow temperature \rightarrow "external" heating of AC tanks

wiss Federal Office of Energy SFO

CSDENGINEERS

Benefits of PA process analysis ...

4.5 bar(a) steam Case of heating requirements for make-up water heating and temperature holding of SU tank

OST

viss Federal Office of Energy SFO

CSDENGINEERS

IG

Time-averaged composites curves

Yearly average composites curves !

These CCs **don't include**:

- CIP wastewater (ELSA constraint → focus on NH₃ condensation)
- Residual final heating to CIP-circuits specific T set-point by steam heated inline HEX (remaining 25% not shifted to ER, AC & SU tanks + final rinse heating)
- Remaining need for injected steam for AC tank T holding (30% conservative):
 - HP not sized for largest required heat duty, even with heat storage (lack of space)
 - Around midnight, NH₃ heat source may be too limited for the peak of CIP activity

CSDENGINEERS

IG

OST

onfédération suisse onfederazione Svizzer

Swiss Federal Office of Energy SFOE

Variability in level of CIP activity

CSDENGINEERS

NGENIOUS BY NATURE

.

onfédération suisse onfederazione Svizzer

Confederaziun svizra Swiss Federal Office of Energy SFOE OST

HEIG

EPFL

HP integration concept #1

Solution combining two HPs with different cycles to match requirements:

- Transcritical CO₂ HP (+ heat storage) to heat make-up water up to 75°C:
 - High COP = 4.45
 - Confirmed technology, of-the-shelf machine
- NH₃ 2 circuits-HP (+ 2 heat storages):
 1. Heating ER tank (HP1.1), COP = 4.6
 2. T holding AC tank (HP1.2), COP = 3.0

Overall COP = 4.3 ... but quite complex

- No HP for T holding of SU tank since:
 - 1. Large temperature lift, low COP = 2.2 2.4
 - 2. Lack of free space for required heat storage

IG

Schematic diagram

Comparison of concepts

HP concept	Design data (Q _{rated} ≅ 1.5 x Q _{mean})	COP ¹	Savings ^{2, 3}	Evaluation
Steam generating HP 4.5 bara	$Q_{rated} \cong 1'200 \; kW$ @ 4.5 bara	≅1.6	\geq 6'000 MWh/y \geq 309 to CO ₂ /y	 ++ Largest savings ++ Simple integration, «no change» - No storage capacity on stean side Poor profitabilty, if any
1-T NH ₃ HP Make-up water to 60°C ER tank heating	$Q_{rated} \cong 400 \text{ kW}$	≅4.0	\ge 2'365 MWh/y \ge 122 to CO ₂ /y	 ++ Standard technology ++ High COP (low OPEX) + Large savings + Limited CAPEX (mutualisation of HP capacity, but 2 storages)
CO ₂ + NH ₃ 2-T HP Make-up water to 75°C ER tank heating AC tank T holding	$\begin{array}{l} \text{CO}_2 \text{ HP}: \text{Q}_{\text{rated}} \cong 250 \text{ kW} \\ \text{NH}_3 \text{ HP1.1}: \text{Q}_{\text{rated}} \cong 240 \text{ kW} \\ \underline{\text{NH}_3 \text{ HP1.2}: \text{Q}_{\text{rated}}} \cong 75 \text{ kW} \\ \hline \end{array} \\ \hline \end{array}$	$\cong 4.4$ $\cong 4.6$ $\cong 3.0$ $\cong 4.3$	≥ 1'460 MWh/y ≥ 75 to CO_2/y ≥ 1'420 MWh/y ≥ 73 to CO_2/y ≥ 324 MWh/y ≥ 17 to CO_2/y ≥ 3'204 MWh/y ≥ 165 to CO_2/y	 ++ Standard technology ++ High overall COP (low OPEX) + Large savings (CO₂ + NH₃ HP1.1) - HP1.2 for AC tank not worth - High CAPEX

¹ Not including the electricity savings resulting from reduced load of cooling towers (lack of data regarding their operation)

² Based on conservative assumptions, energy savings (and CO₂ emissions reduction) can be up to 30% larger

³ CO₂ emissions reduction calculated assuming saved steam stemming 20% from gas and 80% from wood, and CO₂ free electricity

Conclusions

- CIP process is energy intensive and tricky too (stochastic operations) !
- Process knowledge is key for energy efficiency \rightarrow HTHP not needed, HP OK
- Several reasonably interesting concepts with different «profiles»
- Transcritical CO₂ HP + NH₃ HP with 2 circuits ensure optimal matching of CIP heating requirements and high COP, but is CAPEX-intensive (includes 3 storages)
- OPEX and CAPEX not yet calculated (size *vs.* savings trade-off difficult to calculate)
- HP and wood ships steam boiler are competing in CO₂ emissions reduction
- Heat recovery / heat upgrading before resources substitution, not vice-versa !

OST CSDENGINEERS

Thank you for your attention !