

HIGH TEMPERATURE HEAT PUMPS

24 MARCH 2023 | ITTIGEN

Demonstration case studies from IEA Annex 58

Daniel Flórez-Orrego, Eduardo A. Pina École Polytechnique Fédérale de Lausanne IPESE Content

- Introduction
- Demonstration cases
 - Food and beverage
 - > Sewage
 - Electronics
 - Chemicals
 - Pulp and paper
 - > Ceramics
 - > Biorefinery
 - Pharmaceutics

Source: https://heatpumpingtechnologies.org/annex58/task1/#demonstration-cases

- Task 1 "Technologies State of the art and ongoing developments for systems and components" aimed at
 providing an overview of high-temperature heat pump technologies for supplying heat at temperatures
 above 100 °C.
- Detailed information was collected about heat pump systems and successful demonstration cases.
- The review of heat pump systems included both **commercially available systems**, as well as **systems under development**.
- The demonstration cases are based on systems in operation and focusing on the applications and end-user experiences.

Supplier: Skala Fabrikk AS

Installation year: 2021

Application: Ice- and process hot water production, and upgrade of LT heat from dry-cooler

Solution: Retrofitting existing boilers at dairy plant in Norway to cover ice water production

Temperature ranges (source): 4 °C \rightarrow 0.5 °C (ice water), 3 °C \rightarrow -1°C (water/glycol circuit)

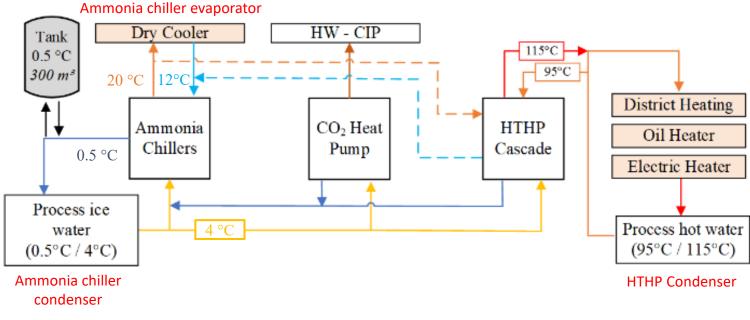
Temperature ranges (sink): pressurized process hot water 95 \rightarrow 115 °C

Refrigerant: LT cycle R290; HT cycle R600

Power: 0.3 MW (heat) + 0.15 MW (cold)

Compressor: Piston

```
COP: 3.4 (ice water mode); 2.5 – 3.2 (dry cooler mode)
```


Investment cost: 500 – 700 €/kW thermal supply

capacity (sink + source)

Savings: Up to 62% primary energy

Estimated annual CO₂ savings: Up to 94%

Takeaway: End-user tuned the production process (i.e. reducing the supply temperature); potential for designing new processes and plants optimized for HTHP integration

https://heatpumpingtechnologies.org/annex58/wp-content/uploads/sites/70/2022/07/annex58casehthp-for-simultaneous-process-cooling-and-heating-skaleup.pdf

Streis Head office of Energy SIGE

Supplier: AMT Kältetechnik and AIT

Installation year: 2020

Application: Starch production facility in Austria

Solution: DryFiciency HP in wheat starch dryer process, uses hot water to supply hot air

Temperature ranges (source): 76 °C \rightarrow 72 °C (design point), 81 °C \rightarrow 78 °C (operation)

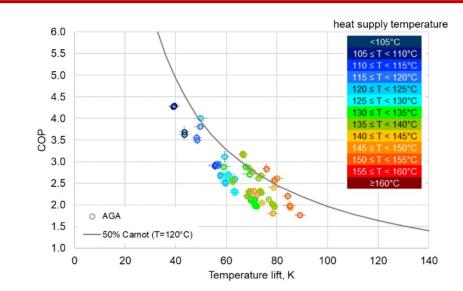
Temperature ranges (sink): 96 °C \rightarrow 138 °C (design point), 102 °C \rightarrow 152 °C (operation)

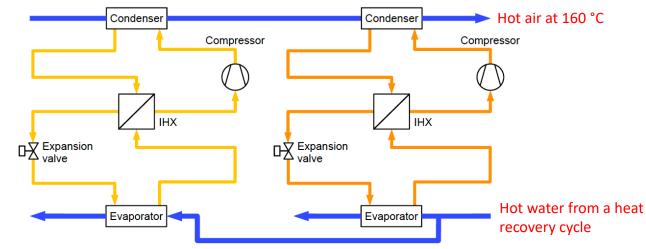
Refrigerant: HFO-1336mzz(Z) (HFO low GWP refrigerant)

Power: 0.3 MW

Compressor: Screw compressors

COP: 3.2 (design point); 2.8 (operation)


Investment cost: -


Savings: 42,900 €/a at 138 °C

Estimated annual CO₂ savings: 660 t/a at 138 °C

Challenges: Material compatibility, mechanical design, integration

infrastructure, and process control

https://heatpumpingtechnologies.org/annex58/wp-content/uploads/sites/70/2022/07/hthp annex58dryfwbgfinal-1.pdf

Supplier: Anlet and KOBELCO

Installation year: 2016

Application: Sewage sludge drying at Hodano water treatment (Japan)

Solution: Indirect dryer and a MVR system. The sludge water content is reduced from

72% W.B. (wet base) to 20% W.B.

Temperature ranges (source): 93 °C

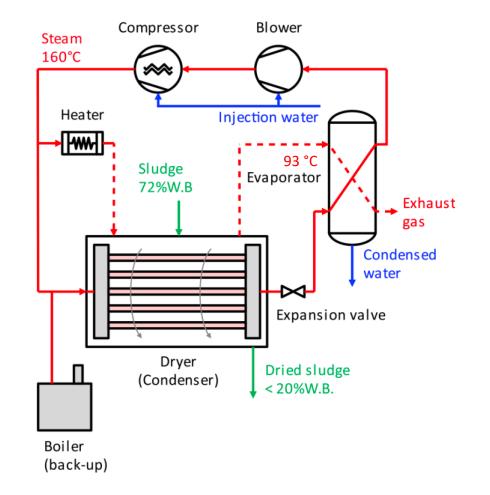
Temperature ranges (sink): 160 °C

Refrigerant: R718 (water)

Power: 0.6 MW

Compressor: Blower + Twin-screw compressor

COP: 2.9


Investment cost: -

Savings: Life cycle cost (40%) and energy consumed (46%)

Estimated annual CO₂ savings: 51% reduction

Takeaway: Decisive factors for the end-user: (i) reduction of total running costs (waste

disposal cost vs. electricity cost); and (ii) easy operation and maintenance

https://heatpumpingtechnologies.org/annex58/wpcontent/uploads/sites/70/2022/07/casehadano-city.pdf

Sewage

Supplier: Rotrex, Epcon Evaporation Technology, Scanship

Installation year: 2020

Application: Sludge drying at Scanship, Drammen (Norway)

Solution: Open loop MVR HP on two batch dryers

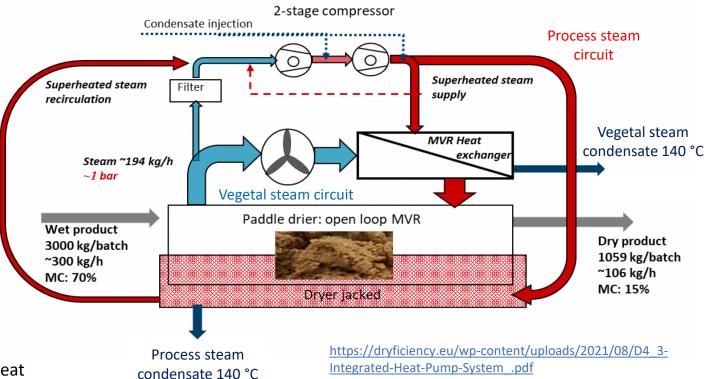
Temperature ranges (source): 100 °C (steam)

Temperature ranges (sink): 125 °C \rightarrow 146 °C (steam)

Refrigerant: R718 (water)

Power: 0.5 MW

Compressor: Turbo-compressor

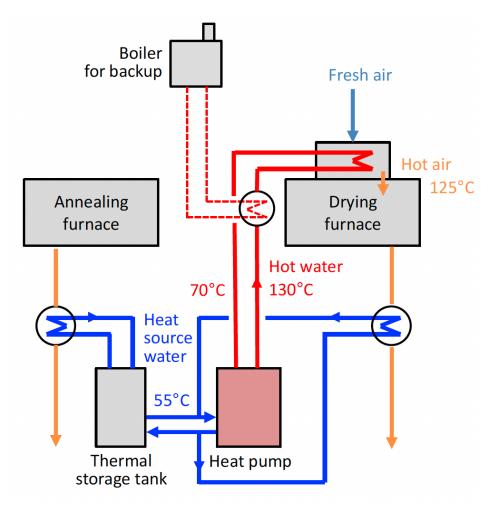

```
COP: 4.5 (supply at 146 °C), 8.6 (supply at 125 °C)
```

Investment cost: -

Savings: Energy costs (82%) and primary energy consumption (76%)

Estimated annual CO₂ savings: -

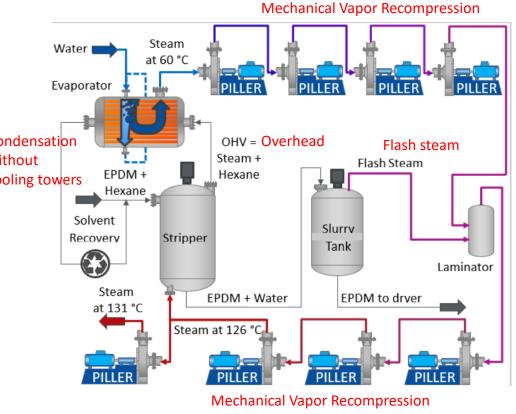
Challenges: Operational start-up to integrate the turbo-compressor heat pump with the steam dryer (i.e. maintaining superheated steam coming from the dryer)



Electronics

Supplier: MHI Thermal Systems **Installation year**: 2012 **Application**: Transformer coil drying process (Japan) **Solution:** HTHP replaces steam boiler. The HP uses both exhaust heat from drying process and annealing process as heat source **Temperature ranges (source)**: 55 °C \rightarrow 50 °C (water) **Temperature ranges (sink)**: 70 °C \rightarrow 130 °C (pressurized water) Refrigerant: R134a Power: 0.6 MW **Compressor**: Centrifugal **COP**: 3.0 Investment cost: -**Savings**: Energy cost reduced by 65% Estimated annual CO₂ savings: Reduced by 60% Takeaway: Preliminary detailed analysis of the heat demand and

waste heat before the installation of the HP was the key to success


https://heatpumpingtechnologies.org/annex58/wpcontent/uploads/sites/70/2022/07/casetakaoka-toko.pdf

COP: 4.4

Supplier: Piller Blowers & Compressors Installation year: 2017 Water **Application**: Processes/Plastics/EPDM Separation Evaporato **Solution**: Steam generation heat pump for stripping units where solvents from the Condensation reaction process are separated from the product without **Temperature ranges**: 60°C (source) – 130°C (sink) cooling towers Refrigerant: R718 (water) Power: 10 MW **Compressor**: Turbo **Investment cost**: 6,800,000 € Payback period: 1.7 years Savings: 4,000,000 €/a (80 % in energy consumption)

Estimated annual CO₂ savings: 12,400 t/a (62% CO₂ emissions reduction)

Production of Ethylene Propylene Diene Monomer

https://www.piller.de/fileadmin/media/pdf-files/product-sheets/steam-regeneration-epdm.pdf https://heatpumpingtechnologies.org/annex58/wp-content/uploads/sites/70/2022/07/hthpannex58-pillardemocases-1.pdf 9 High Temperature Heat Pumps | 24 March 2023

Supplier: Spilling Technologies GmbH **Installation year**: 2018 6-Cyl.- + 3-Cyl.-Steam Compressor Units **Application:** Chemical/Chemicals outlet steam Solution: Upgrade excess steam from reactor cooling (5 bar) by compressing (superh. 240°C) HP process steam steam to 19.5 bar 19.5 barabs LP excess steam 5 bar_{abs}, 16.5 t/h **Temperature ranges**: 150°C (source) – 240°C (sink) El. power demand inlet steam Steam flow rate: 1,500 + 750 kW(el) ~ 18.0 t/h (discharge side) (sat. 152°C) **Refrigerant**: R718 (water) Power: 12 MW Energy cost savings **Compressor**: Piston (4LT-2HT), first stage 5 \rightarrow 12 bar, second stage 12 \rightarrow 19.5 bar, For comparison: conventional steam generation CO₂-savings by enables variation of 30% to 100 % steam flow rate steam recompression: up to 14,000 t/a **COP**: 5.3 (condensing and subcooling heat to 105 °C) Steam Boiler **Investment cost**: 2,200,000 € (excl. integration) Natural gas demand: ~12,500 kW Payback period: not disclosed Savings: 12.5 MW of natural gas Condensate is injected into the steam to avoid too high steam temperatures from the compression (increase in discharge flow) Estimated annual CO, savings: 14,000 t/a (7500 h, 0.281 kg/kWhee)

Chemicals

Supplier: Qpinch	dimer (+ water)
Installation year: 2020	
Application: Chemical/Steam generation at Borealis	
Solution: Upgrade LT heat from ethylene polymerization reactor and a LP steam to MP &	WASTE HEAT
HP steam. Oligomerization of H_3PO_4 to transform waste heat into chemical energy.	BRIA 🧚
Temperature ranges: 80-135°C (variable source) – 160°C (sink)	monomer
Refrigerant : H ₃ PO ₄ (phosporic acid loop)	STEAM
Power : 2.9 MW (3-5% of the thermal output power as electricity)	50% RECOVERED
Compressor: Heat driven	↑ 10 BARG / 185 °C
COP : 0.45 (temperature lifts 80 K, heat output 400 kW to 1.3 MW)	
Investment cost: not disclosed	120↔140 °C
Payback period: not disclosed	SECONDARY LOOP 50%
Savings: 190,000 € EU ETS credits	▼ TO COOLING
Estimated annual CO ₂ savings: 2,200 t/a	Three different residual heat sources that are
Challenges: LDPE reactor has 40 recipes with highly fluctuating residual heat	combined via an intermediate hot water loop
temperatures and output. Footprint of 4 m x 6 m and a height of 15 m	that feeds the QHT unit

Supplier: AMT Kältetechnik and AIT

Installation year: 2019

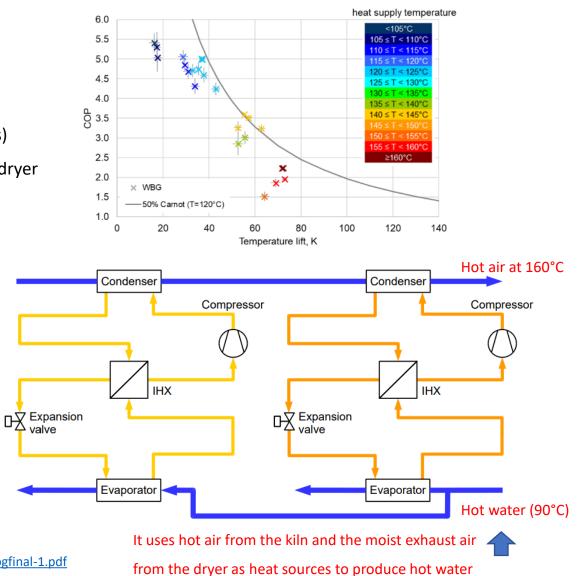
Application: Processes/Minerals/Brick drying (Wienerberger AG: 200 brick dryers) **Solution**: DryFiciency HP uses hot water to supply hot air for the last zone of the dryer

Temperature ranges: 85°C (source) – 120°C to 160°C (sink)

Refrigerant: R1336mzz(Z) (HFO low GWP refrigerant)

Power: 0.2 MW – 0.3 MW

Compressor: Piston (x 8)


COP: 2.2 (highest T) - 5.0 (design)

Investment cost: not disclosed

Payback period: not disclosed

Savings: 60,500 €/a at 120°C

Estimated annual CO₂ savings: 590 t/a

https://heatpumpingtechnologies.org/annex58/wp-content/uploads/sites/70/2022/07/hthpannex58dryfwbgfinal-1.pdf

Supplier: Spilling Technologies GmbH

Installation year: 2016

Application: Processes/Pulp/Pulp drying

Solution: Steam mechanically recompressed for pulp drying in a Pressurized

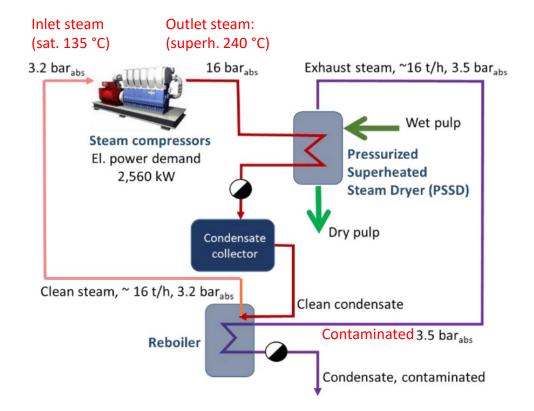
Superheating Steam Dryer. No external source of steam is required.

Temperature ranges: 130°C (source) – 240°C (sink)

Refrigerant: R718 (water)

Power: 11.2 MW

```
Compressor: Piston (4LT: 3.2 \rightarrow 8 bar and 2HT: 8 \rightarrow 16 bar)
```


COP: > 4.2 (condensing and subcooling heat to 105 °C)

Investment cost: 2,500,000 € (excl. integration)

Payback period: not disclosed

Savings: not disclosed

Estimated annual CO₂ savings: 14,000 t/year (6,000 h, 0.013 kg/kWh_{ee})

https://heatpumpingtechnologies.org/annex58/wp-content/uploads/sites/70/2022/07/spillinghthpannex58democaseifinal-1.pdf

Supplier: Kobelco

Installation year: 2013

Application: Processes/Biorefinery/Distillation

Solution: Ethanol concentration (95%) from beet syrup, wheat and rice. Distillation

is 60% of steam consumption. Dehydration with zeolite membrane to 99.5%

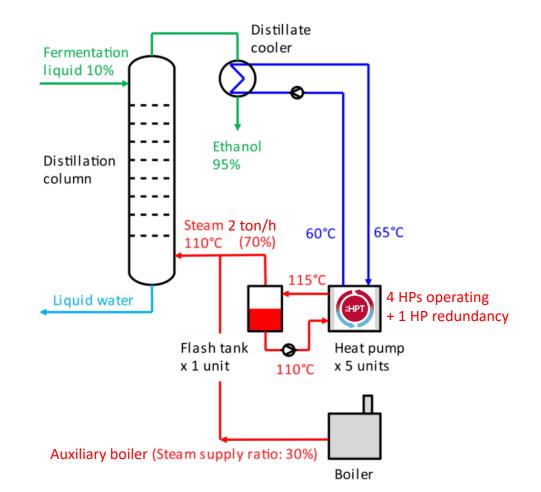
Temperature ranges: 60°C (source) – 120°C (sink)

Refrigerant: R245fa

Power: 1.9 MW (4 x 0.37 MW + 1 x 0.37 MW)

Compressor: Twin screw

COP: > 3.5


Investment cost: not disclosed

Payback period: 3 years

Savings: Energy consumption reduced by 54%

Estimated annual CO2 savings: Emissions reduced by 43%

Challenges: End-user was concerned about the reliability

https://heatpumpingtechnologies.org/annex58/wp-content/uploads/sites/70/2022/07/casehokkaido-bioethanol.pdf https://www.jeh-center.org/asset/00032/monodukurinidenki/vol4 hokkaidobaioetanoru.pdf.pdf

Pharmaceutics

Supplier: Olvondo Technology AS

Installation year: 2017

Application: Pharma/Recooling (Pharma)

Solution: Steam generation at AstraZeneca (R&D facility in Gothenburg)

Temperature ranges: 35°C (source) – 180°C (sink)

Refrigerant: R704 (Helium)

Power: 1.5 MW (3 x 500 kW)

Compressor: Piston

COP: 1.7

Investment cost: 1,800,000 €, 3 x HPs (excl. integration, incl. monitoring &

control & He solution)

Payback period: 3 years

Savings: 9.4 GWh/y

Estimated annual CO₂ savings: 600 t/a

Challenges: Raising the TRL of the heat pump from level 7 to level 9.

10 bar steam-generating heat pump using rejected heat from air conditioning chillers.

Proven concept for a Stirling engine operated as an industrial-scale heat pump.

https://klimat2030.se/astrazeneca-i-goteborg-leder-fossilfri-utveckling/ https://heatpumpingtechnologies.org/annex58/wp-content/uploads/sites/70/2022/07/caseastrazenecaolvondo.pdf

Summary demonstration case studies

Schweizerische Edgenossesschaft Gefederation suszes Genederaziun svizza Swiss Federal Office of Energy SPOE

Industrial sector	Food and beverage	Food and beverage	Sewage	Sewage	Electronics	Chemicals	Chemicals	Chemicals	Ceramics	Pulp and paper	Biorefinery	Pharmaceutics
Supplier	Skala Fabrikk AS	AMT Kältetechnik and AIT	Anlet and KOBELCO	Rotrex, Epcon Evaporation Technology, Scanship	MHI Thermal Systems	Piller Blowers & Compressors	Spilling Technologies GmbH	Qpinch	AMT Kältetechnik and AIT	Spilling Technologies GmbH	Kobelco	Olvondo Technology AS
Installation year	2021	2020	2016	2020	2012	2017	2018	2020	2019	2016	2013	2017
Application	Ice- and process hot water production, and upgrade of LT heat from dry-cooler		Sewage sludge drying at Hodano water treatment (Japan)	Sludge drying at Scanship, Drammen (Norway)	Transformer coil drying process (Japan)	Processes/Plastics/EPDM Separation	Chemical/Chemicals	Chemical/Steam generation at Borealis	Processes/Minerals/Brick drying (Wienerberger AG: 200 brick dryers)	Processes/Pulp/Pulp drying	Processes/Biorefinery/Disti Ilation	Pharma/Recooling (Pharma)
Solution	cover ice water production	starch dryer process, uses hot water to supply hot air			HTHP replaces steam boiler. The HP uses both exhaust heat from drying process and annealing process as heat source	Steam generation heat pump for stripping units where solvents from the reaction process are separated from the product	Upgrade excess steam from reactor cooling (5 bar by compressing steam to 19.5 bar	Upgrade LT heat from ethylene polymerization reactor and a LP steam to MP & HP steam. Oligomerization of H3PO4 to transform waste heat into chemical energy.	water to supply hot air for	Steam mechanically recompressed for pulp drying in a Pressurized Superheating Steam Dryer. No external source of steam is required.	Ethanol concentration (95%) from beet syrup, wheat and rice. Distillation is 60% of steam consumption. Dehydration with zeolite membrane to 99.5%	Steam generation at AstraZeneca (R&D facility in Gothenburg)
Temperature ranges (source)	4 °C à 0.5 °C (ice water), 3 °C à -1°C (water/glycol circuit)	76 °C à 72 °C (design point), 81 °C à 78 °C (operation)	93 °C	100 °C (steam)	55 °C à 50 °C (water)	60 °C	150 °C	80-135 °C (variable source)	85°C	130 °C	60 °C	35 °C
Temperature ranges (sink)	pressurized process hot water 95 à 115 °C	96 to 138 °C (design point), 102 to 152 °C (operation)	160 °C	125 to 146 °C (steam)	70 to 130 °C (pressurized water)	130°C	240 °C	160 °C	120 to 160°C (sink)	240 °C	120 °C	180 °C
Refrigerant	LT cycle R290; HT cycle R600	HFO-1336mzz(Z) (HFO low GWP refrigerant)	R718 (water)	R718 (water)	R134a	R718 (water)	R718 (water)	H3PO4 (phosporic acid loop)	R1336mzz(Z) (HFO low GWP refrigerant)	R718 (water)	R245fa	R704 (Helium)
Heating capacity	0.3 MW (heat) + 0.15 MW (cold)	0.3 MW	0.6 MW	0.5 MW	0.6 MW	10 MW	12 MW	2.9 MW (3-5% of the thermal output power as electricity)	0.2 – 0.3 MW	11.2 MW	1.9 MW (4 x 0.37 MW + 1 x 0.37 MW)	1.5 MW (3 x 500 kW)
Compressor	Piston	Screw compressors	Blower + Twin-screw compressor	Turbo-compressor	Centrifugal	Turbo	Piston (4LT-2HT), first stage 5 à 12 bar, second stage 12 à 19.5 bar, enables variation of 30% to 100 % steam flow rate	Heat driven	Piston (x 8)	Piston (4LT: 3.2 à 8 bar and 2HT: 8 à 16 bar)	Twin screw	Piston
СОР	3.4 (ice water mode); 2.5 – 3.2 (dry cooler mode)	3.2 (design point); 2.8 (operation)	2.9	4.5 (supply at 146 °C), 8.6 (supply at 125 °C)	3	4.4	5.3 (condensing and subcooling heat to 105 °C)	0.45 (temperature lifts 80 K, heat output 400 kW to 1.3 MW)	2.2 (highest T) - 5.0 (design)	> 4.2 (condensing and subcooling heat to 105 °C)	> 3.5	1.7
Investment cost	500 – 700 €/kW thermal supply capacity (sink + source)	not disclosed	not disclosed	not disclosed	not disclosed	6.8 Mio. EUR (payback 1.7 years)	2.2 Mio. EUR (excl. integration) Payback period: not disclosed	not disclosed	not disclosed	2.5 Mio. EUR (excl. integration)	not disclosed payback 3 years	1.8 Mio. EUR 3 x HPs (excl. integration, incl. monitoring & control & He solution) Payback 3 years
Savings	Up to 62% primary energy	42'900 EUR/a at 138 °C	Life cycle cost (40%) and energy consumed (46%)	Savings: Energy costs (82%) and primary energy consumption (76%)	Energy cost reduced by 65%	4 Mio. EUR/a (80 % in energy consumption)	12.5 MW of natural gas	190'000 EUR EU ETS credits	60'500 EUR/a at 120 °C	Savings: not disclosed	Energy consumption reduced by 54%	9.4 GWh/y
Estimated annual CO2 savings	Up to 94%	660 t/a at 138 °C	51% reduction	not available	Reduced by 60%	12,400 t/a (62% CO ₂ emissions reduction)	14,000 t/a (7500 h, 0.281 kg/kWhee)	2'200 t/a	590 t/a	14'000 t/year (6,000 h, 0.013 kg/kWh _{ee})	Emissions reduced by 43%	600 t/a
Takeaway / Challengea	End-user tuned the production process (i.e. reducing the supply temperature); potential for designing new processes and plants optimized for HTHP integration	Material compatibility, mechanical design, integration infrastructure, and process control	Decisive factors for the end-user: (i) reduction of total running costs (waste disposal cost vs. electricity cost); and (ii) easy operation and maintenance		Preliminary detailed analysis of the heat demand and waste heat before the installation of the HP was the key to success	not available	not available	LDPE reactor has 40 recipes with highly fluctuating residual heat temperatures and output. Footprint of 4 m x 6 m and a height of 15 m	not available	not available	End-user was concerned about the reliability	Raising the TRL of the heat pump from level 7 to level 9.